
Mastering Machine
Learning
A Step-by-Step Guide
with MATLAB

2 | Mastering Machine Learning

This ebook builds on Machine Learning with MATLAB, which reviewed
machine learning basics and introduced supervised and unsupervised
techniques.

Using a heart sounds classifier as an example, we take you through the
complete workflow for developing a real-world machine learning appli-
cation, from loading data to deploying a trained model. For each train-
ing phase, we demonstrate the techniques that are critical to achieving
accurate models, and help you master the more challenging training
tasks, including selecting algorithms, optimizing model parameters, and
avoiding overfitting.

In this ebook you’ll also learn how to turn a model into a predictive tool
by training it on new data, extracting features, and generating code for
deployment on an embedded device.

Introduction

Review the Basics
Machine Learning Overview 3:02
Machine Learning with MATLAB

OPTIMIZE
PARAMETERSTRAIN MODELACCESS AND

PREPROCESS DATA
EXTRACT
FEATURES MODEL

A B C

CAPTURE
SENSOR DATA

EXTRACT
FEATURES RUN MODEL

A B C

PREDICTION

OPTIMIZE
PARAMETERSTRAIN MODELACCESS AND

PREPROCESS DATA
EXTRACT
FEATURES MODEL

A B C

CAPTURE
SENSOR DATA

EXTRACT
FEATURES RUN MODEL

A B C

PREDICTION

TRAIN: Iterate until you achieve satisfactory performance.

PREDICT: Integrate trained models into applications.

https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html
https://www.mathworks.com/videos/machine-learning-with-matlab-87051.html
https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html

3 | Mastering Machine Learning

Heart sounds are a rich source of information for early diagnosis of car-
diac pathologies. Distinguishing normal from abnormal heart sounds
requires a specially trained clinician. Our goal is to develop a machine
learning application that can identify abnormal heart sounds. Using a
heart sounds monitoring application, regular medical staff could screen
for heart conditions when no specialist is available, and patients could
monitor themselves.

In developing this application, we’ll follow these steps:

1.	Access and explore the data.
2.	Preprocess the data and extract features.
3.	Develop predictive models.
4.	Optimize the model.
5.	Deploy analytics to a production system.

We encourage you to work through the example yourself.
Simply download the MATLAB® code and follow the
“Hands-On Exercise” callouts throughout the ebook.

Building a Heart Sounds Classification Application with MATLAB

Schematic heart sounds classifier and prototype app.

ABNORMAL

NORMAL

CLASSIFICATION ALGORITHMHEART SOUND RECORDING

Tools You’ll Need
Download a free 30-day trial of MATLAB for Machine Learning.
Download MATLAB code for the heart sounds classification application.

https://www.mathworks.com/campaigns/products/trials/targeted/mal.html?s_iid=cmpofr_trial_mlebook_link
https://www.mathworks.com/matlabcentral/fileexchange/65286

4 | Mastering Machine Learning

Our example uses the dataset from the 2016 PhysioNet and Computing
in Cardiology challenge, which consists of thousands of recorded heart
sounds ranging in length from 5 seconds to 120 seconds.

The dataset includes 3240 recordings for model training and 301 re-
cordings for model validation. After downloading the data, we store the
training and validation sets in separate folders—a standard procedure
in machine learning.

Exploring the Data
The first step in any machine learning project is understanding what
kind of data you are working with. Common ways to explore data in-
clude inspecting some examples, creating visualizations, and (more ad-
vanced) applying signal processing or clustering techniques to identify
patterns.

To understand what is involved in distinguishing normal from abnormal
heart sounds, let’s begin by listening to some examples.

STEP 1. Access and Explore the Data

You might notice that the abnormal heart sound has higher frequencies,
with noise between beats. The normal heart sound is more regular, with
silence between beats.

Hands-On Exercise
Execute the first section of the Live Editor script. The script will download the heart sounds dataset
from the 2016 PhysioNet and Computing in Cardiology challenge to your local workspace.

Hands-On Exercise
Listen to the examples of abnormal and normal heart sounds provided in the main directory of the
code example. MATLAB provides Audio Read and Audio Player for working with audio files. These
files are used in the “What does an (ab)normal heart sound like?” sections of the example scripts.

Plot of an abnormal heart sound, generated in the MATLAB Live Editor.

5 | Mastering Machine Learning

After this initial exploration of the data and the classification task, we
load all the data into memory for preprocessing. MATLAB makes it easy
to load large datasets that are distributed across multiple directories: it
creates a handle on the complete dataset, which can then be read into
memory in one or multiple chunks. For large datasets, MATLAB can dis-
tribute execution across multiple compute resources.

Each recording is an audio file labeled either abnormal or normal. Be-
cause we know the true category (“ground truth”) of each file in the
dataset, we can apply supervised machine learning, which takes a
known set of input data and known responses to the data (output) and
trains a model to generate reasonable predictions for the response to
new data.

STEP 1. Access and Explore the Data – continued

Normal heart sound (left) and abnormal (right), shown in the Signal Analyzer app.
The red arrow indicates a spike in frequency content at around 200 Hz for the abnormal heart sound.

Hands-On Exercise
To load the training data and corresponding true category into memory, execute the sections
“Prepare to read the data into memory” and “Create a table with filenames and labels” in
the example.

Analyzing the Signals
We can get a deeper understanding of the differences between these
signals—without writing any code—by using the Signal Analyzer app
in Signal Processing Toolbox™ to view the signals side-by-side in the
frequency domain.

https://www.mathworks.com/discovery/supervised-learning.html
https://www.mathworks.com/products/signal.html

6 | Mastering Machine Learning

Most datasets require some preprocessing before feature extraction—
typical tasks include removing outliers and trends, imputing missing
data, and normalizing the data. These tasks are not required for our
dataset because it has already been preprocessed by the organizers of
the PhysioNet challenge.

Extracting and selecting features helps improve a machine learning al-
gorithm by focusing on the data that’s most likely to produce accurate
results.

Extracting Features
Feature extraction is one of the most important parts of machine learn-
ing because it turns raw data into information that’s suitable for machine
learning algorithms. Feature extraction eliminates the redundancy pres-
ent in many types of measured data, facilitating generalization during
the learning phase. Generalization is critical to avoiding overfitting the
model to specific examples.

STEP 2. Preprocess the Data and Extract Features

Selecting Features
While feature extraction is the first step, we need to avoid using too
many features. A model with a larger number of features requires more
computational resources during the training stage, and using too many
features leads to overfitting.

The challenge is to find the minimum number of features that will capture
the essential patterns in the data.

Feature selection is the process of selecting those features that are most
relevant for your specific modeling problem and removing unneeded or
redundant features. Common approaches to feature selection include
stepwise regression, sequential feature selection, and regularization.

Feature extraction can be time-consuming if you have a large dataset
and many features. To speed up this process, you can distribute com-
putation across available cores (or scale to a cluster) using the parfor
loop construct in Parallel Computing Toolbox™.

Learn More
The ebook Machine Learning with MATLAB describes common feature extraction techniques for
sensor, image, video, and transactional data.

https://www.mathworks.com/help/stats/feature-extraction.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html

7 | Mastering Machine Learning

In the heart sounds example, based on our knowledge of signal classifi-
cation, we extract the following types of features:
•	 Summary statistics: mean, median, and standard deviation
•	 Frequency domain: dominant frequency, spectrum entropy, and Mel

Frequency Cepstral Coefficients (MFCC)

Extracting these types of features listed above yields 26 features from
the audio signal.

STEP 2. Preprocess the Data and Extract Features – continued

For developing the model, the features must be captured in either table
or matrix format. In our example, we built a table where each column
represents a feature. The figure below shows some of the Mel Frequency
Cepstras and the sound label (the true category of ‘normal’ or
‘abnormal’ heart sounds).

Hands-On Exercise
The “Preprocess Data” section of the example script generates these features from the heart sound
files, but since that process takes several minutes, by default pregenerated features are simply read
from the file FeatureTable.mat. To perform the feature extraction, remove (or rename) this file
before running the section.

(Partial) feature table.

CC8 MFCC9 MFCC10 MFCC11 MFCC12 MFCC13 class

11315 -0.28488 1.6218 -0.53338 -1.6926 -2.0239 'Abnormal'

2.394 0.10001 2.9168 -1.3413 -0.90557 -1.4914 'Abnormal'

.1322 -0.42672 2.3943 1.5946 -2.0933 -1.3693 'Abnormal'

.8257 0.865 2.4926 -0.91656 -0.55254 -2.2298 'Abnormal'

.5196 -0.64708 3.923 -0.5634 -1.7582 -0.4827 'Abnormal'

8 | Mastering Machine Learning

STEP 3. Develop Predictive Models

i. Selecting the Training and Validation Data
Before training actual classifiers, we need to divide the data into a train-
ing and a validation set. The validation set is used to measure accuracy
during model development. For large datasets such as the heart sounds
data, holding out a certain percentage of the data is appropriate;
cross-validation is recommended for smaller datasets because it maxi-
mizes how much data is used for model training, and typically results in
a model that generalizes better.

When you choose “No validation,” the model is trained and evaluated
on the entire dataset—no data is held out for validation. Retraining the
model on the entire dataset can significantly affect its performance,
especially if you have a very limited dataset. And knowing how
accurately the model performs on the training set gives you guidance
on which approaches to take to further improve the model.

Developing a predictive model is an iterative process
involving these steps:

i.	 Select the training and validation data.
ii.	 Select a classification algorithm.
iii.	Iteratively train and evaluate classification models.

9 | Mastering Machine Learning

For the heart sounds example, we use the Classification Learner app
to quickly compare classifiers.

STEP 3. Develop Predictive Models – continued

ii. Selecting a Classification Algorithm
No single machine learning algorithm works for every problem, and
identifying the right algorithm is often a process of trial and error. How-
ever, being aware of key characteristics of various algorithms empowers
you to choose which ones to try first, and to understand the tradeoffs
you are making. The following table lists characteristics of popular
classification algorithms.

Algorithm Prediction Speed Training Speed Memory Usage Required Tuning General Assessment

Logistic Regression (and
Linear SVM)

Fast Fast Small Minimal Good for small problems with linear
decision boundaries

Decision Trees Fast Fast Small Some Good generalist, but prone to overfitting

(Nonlinear) SVM (and
Logistic Regression)

Slow Slow Medium Some Good for many binary problems, and handles
high-dimensional data well

Nearest Neighbor Moderate Minimal Medium Minimal Lower accuracy, but easy to use and interpret

Naïve Bayes Fast Fast Medium Some Widely used for text, including spam filtering

Ensembles Moderate Slow Varies Some High accuracy and good performance for small- to
medium-sized datasets

Neural Network Moderate Slow Medium to Large Lots Popular for classification, compression, recognition,
and forecasting

Hands-On Exercise
You can launch the Classification Learner app from the Apps tab or programmatically by typing
ClassificationLearner in the command window. Once you start a new session, select
feature_table as the data to work with, use all 26 features extracted in the previous step (for
now), and select “Holdout Validation” with 25% of data held out as the validation method.

https://www.mathworks.com/products/statistics/classification-learner.html

10 | Mastering Machine Learning

iii. Iteratively Training and Evaluating Classification Models
We are now ready to begin the iterative training and evaluation of mod-
els. We can either follow the brute force approach and run all the al-
gorithms (this is easy to do with the Classification Learner app), or start
with the algorithms that seem to best fit the specific classification task.

You can select an individual classifier or multiple classifiers simultane-
ously, such as “All support vector machines.” You can then train classi-
fiers in parallel and compare their performance on your data. For each
classifier that you train, the accuracy is estimated either on the held-out
validation data or using cross validation, depending on which data you
selected for validation in the previous step.

For our heart sounds application, the initial results suggest that the
(“Fine”) K-nearest neighbors (KNN) classifier performs well, followed by
the quadratic support vector machine (SVM) and (Fine) decison tree.

Our initial heart sounds classifier achieves an accuracy rate above
90%. This sounds good, but it is still insufficient for a heart-screening
application. How can we further improve the model’s performance?

STEP 3. Develop Predictive Models – continued

Initial comparison of multiple classification algorithms.

Learn More
For an overview of the training workflow, watch
Classify Data Using the Classification Learner App 5:12.

https://www.mathworks.com/videos/classify-data-using-the-classification-learner-app-106171.html

11 | Mastering Machine Learning

Since our model achieved almost the same level of accuracy on the test
data as it did on the training data, adding more training data is unlikely
to improve it. To further improve the accuracy of our heart sound classi-
fier, we will first try a more complex algorithm and then introduce bias
and tune the model parameters.

Trying a More Complex Classifier
Using an individual classification tree tends to overfit the training data.
To overcome this tendency, we’ll try ensembles of classification trees
(commonly known as “random forests”). With the heart sounds data, a
bagged decision tree ensemble achieves 93% accuracy—in this case no
improvement over the best individual classifier.

To improve model performance, aside from trying other (more com-
plex) algorithms, we need to make changes to the process. Common
approaches focus on one of the following aspects of machine learning
model development:
•	 Tuning model parameters. We can almost always improve

performance by changing key model parameters from their
default settings.

•	 Adding to or modifying training data. Adding training data helps
until we reach the point of overfitting (when the error rate starts to
increase). Additional preprocessing can remedy any issues with the
data itself that we may have overlooked, such as corrupted data, out-
liers, or missing values.

•	 Transforming or extracting features. If our current feature set doesn’t
capture all the variation inherent in the data, extracting additional
features may help. By contrast, if we see signs of overfitting, we can
try further reducing the feature set by applying a reduction technique
such as principal component analysis (PCA), linear discriminant anal-
ysis (LDA), or singular value decomposition (SVD). If the features vary
widely in scale, feature transformations such as normalization
may help.

•	 Making task-specific tradeoffs. If some misclassifications are less de-
sirable than others, we can apply a cost matrix to assign different
weights to specific prediction classes (for example, misclassifying an
actual heart condition as normal).

STEP 4. Optimize the Model

Hands-On Exercise
Run the “Split data into training and testing sets” section in the example script so that you can
evaluate the impact of the various optimization techniques on the held-out test data.

12 | Mastering Machine Learning

To improve task-specific performance, we will bias our classifier to
minimize misclassifications of actual heart conditions. The tradeoff,
that the model will misclassifiy more normal heart sounds as abnormal,
is acceptable.

Assessing bias in classifiers with the Classification Learner app.

Introducing Bias
So far, we have assumed that all classification errors are equally unde-
sirable, but that is not always the case. In the heart sounds application,
for example, a false negative (failing to detect an actual heart condition)
has much more severe consequences than a false positive (erroneously
classifying a normal heart sound as abnormal).

To explore the tradeoff between different kinds of misclassification, we’ll
use a confusion matrix. (We can easily obtain a confusion matrix by
switching from the scatter plot view in the Classification Learner app.)
The confusion matrix for the heart sound classifier shows that our prelim-
inary models misclassify only 5% of normal sounds as abnormal while
classifying 12% of abnormal sounds as normal. In other words, while
we mistakenly flag only 5% of healthy hearts, we fail to detect more
than 10% of actual heart conditions, a situation that is clearly unaccept-
able in medical practice.

This example demonstrates how analyzing performance based solely on
overall accuracy—almost 94% for this model—can be misleading. This
situation occurs when the data is unbalanced, as in this case, where our
dataset contains roughly four times as many normal as abnormal heart
sounds.

STEP 4. Optimize the Model – continued

13 | Mastering Machine Learning

STEP 4. Optimize the Model – continued

The confusion matrix shows that the resulting model fails to detect fewer
than 8% of abnormal sounds while misclassifying slightly more normal
sounds as abnormal (8%, compared with 5% in the unbiased model).
The overall accuracy of this model remains high at 92%.

Reducing misclassification of abnormal sounds by using a cost function.

Hands-On Exercise
Run the “Train the classifier with misclassification cost” section in the example script. The script
applies the cost matrix and performs Bayesian optimization of hyperparameters at the same time.

The standard way to bias a classifier is to introduce a cost function that
assigns higher penalties to undesired misclassifications.

The following code introduces a cost function that penalizes misclassifi-
cations of abnormal sounds by a factor of 20.

Striking a different balance between accuracy and tolerance for false negatives
by introducing a cost function.

14 | Mastering Machine Learning

STEP 4. Optimize the Model – continued

As we’ve seen, machine learning algorithm parameters can be tuned to
achieve a better fit. The process of identifying the set of parameters that
provides the best model is often referred to as “hyperparameter tuning.”
To make hyperparameter tuning more efficient and to improve the odds
of finding optimal parameter values, we can use automated Grid search
and Bayesian optimization in MATLAB.

Grid search exhaustively searches a finite set of parameter value
combinations, but it can take a long time.

Bayesian optimization develops a statistical model of the hyperparam-
eter space and aims to minimize the number of experiments needed to
find the optimal values.

The example script performs the hyperparameter tuning using Bayesian
optimization while simultaneously introducing the cost function.

ROC curve for the bagged tree ensemble classifier.

Tuning Model Parameters
Instead of using scatter plots and confusion matrices to explore the
tradeoff between true and false positives, we could use a receiver op-
erating characteristic (ROC) curve. The ROC curve is a useful tool for
visually exploring the tradeoff between true positives and false positives.
You can use an ROC curve to select the best operating point or cutoff
for your classifier to minimize the overall “cost” as defined by your cost
function.

Learn More
Bayesian Optimization Characteristics

https://www.mathworks.com/help/stats/bayesian-optimization-workflow.html#bva8nmd-1

15 | Mastering Machine Learning

STEP 4. Optimize the Model – continued

Using Feature Selection to Correct
Misclassification and Overfitting
So far, we’ve used all 26 features that we extracted when we trained
the model. A final approach for optimizing performance entails feature
selection: removing features that are either redundant or not carrying
useful information. This step reduces computational cost and storage re-
quirements, and it results in a simpler model that is less likely to overfit.

Reducing the feature set is important for the heart sounds application
because it reduces the size of the model, making it easier to deploy on
an embedded device.

Feature selection approaches include systematically evaluating feature
subsets (which is computationally very expensive) and incorporating fea-
ture selection into the model construction process by applying weights to
each feature (using fewer features helps minimize the objective function
used during training).

For our heart sounds classifier, we apply neighborhood component
analysis (NCA), a powerful feature selection technique that can handle
very high-dimensional datasets. NCA reveals that about half the features
do not contribute significantly to the model. We can therefore reduce the
number of features from 26 to 15.

Hands-On Exercise
Run the “Perform feature selection using Neighborhood Component Analysis” section in the example
script, followed by “Train model with selected features.”

Outcome of automated feature selection, identifying the most relevant
features using neighborhood component analysis.

Learn More
Selecting Features for Classifying High-Dimensional Data

https://www.mathworks.com/help/stats/examples/selecting-features-for-classifying-high-dimensional-data.html

16 | Mastering Machine Learning

STEP 4. Optimize the Model – continued

To evaluate the performance impact of selecting just 15 features, we re-
train the model with hyperparameter tuning and the cost function activat-
ed. The updated model fails to detect just 6% of abnormal heart condi-
tions—slightly better than before—but it falsely classifies 15% of normal
conditions as abnormal, slightly reducing overall accuracy. In medical
practice, any positive result would be followed up with additional tests,
eliminating most of the 15% false positives from the initial screening.

Iterating to Try Other Algorithms
To further improve the model, we could try the same series of optimiza-
tion steps with different algorithms, since how much improvement the
various optimization techniques yields varies with the algorithm. You

ITERATIVE MACHINE LEARNING PROCESS

EVALUATE
MODEL

RUN
MODEL

EXTRACT
FEATURES

CAPTURE
SENSOR DATA

can repeat the iterative process described in the previous section—for
example, revisiting the KNN algorithm, which performed well initially.
You might even go back to the feature extraction phase and look for ad-
ditional features. To identify the best model, it is invariably necessary to
iterate between the different phases of the machine learning workflow.
You have mastered machine learning when you can infer what to try
next from evaluating your current model.

In our heart sounds example, we are ready move on to the next
and final step: deploying the classifier.

17 | Mastering Machine Learning

STEP 5. Deploy Analytics to a Production System

Machine learning applications can be deployed into production systems
on desktops, in enterprise IT systems (either onsite or in the cloud), and
embedded systems. For desktops and enterprise IT systems, you can de-
ploy MATLAB applications on servers by compiling the code either as a
standalone application or for integration with an application written in
another language, such as C/C++, Python®, Java®, or .NET. Many em-
bedded applications require model deployment in C code.

MATLAB Coder™ makes deployment on embedded systems easy by au-
tomatically translating MATLAB into C code.

Generating C Code
Our heart sounds diagnostic application will run on a medical device
such as a wearable heart monitor or a mobile app. To prepare the ap-
plication for deployment, we generate C code from the model by per-
forming the following steps:

1.	Save the trained model as a compact model.
2.	Launch MATLAB Coder.
3.	Create an entry point function that takes raw sensor data as input

and classifies the patient’s heart sound as either normal or abnormal.

MATLAB Coder automatically generates the corresponding C code.

Hands-On Exercise
Run the “Validate final model” section in the example script. The application displays the predicted
class alongside the true class for several hundred heart sounds in the “validation” dataset, which
was downloaded at the very beginning, along with the training data.

C-code generation with MATLAB Coder.

Tools You’ll Need
Request a MATLAB Coder trial.

https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/campaigns/products/trials/assisted/me.html

18 | Mastering Machine Learning

At this point, we are ready to implement the application on a
hand-held device.

STEP 5. Deploy Analytics to a Production System – continued

To validate the generated C or C++ code, we implement a simple pro-
totype application that interactively classifies files from the validation
dataset. The three-step process described here generates an executable
version that can be called from within MATLAB. We will use this version
in our prototype (which is written in MATLAB, not C).

Validating the classifier in MATLAB.

Learn More
•	 Embedded Code Generation
•	 MATLAB to C Made Easy (55:15)

https://www.mathworks.com/solutions/embedded-code-generation.html
https://www.mathworks.com/videos/matlab-to-c-made-easy-81870.html

19 | Mastering Machine Learning

Essential Tools for Machine Learning

With MATLAB and specialized toolboxes, you can develop, tune, and
deploy predictive analytics without extensive knowledge of machine
learning or data science. MATLAB and related products offer all the
tools you need to build and deploy your analytics:

•	 Data processing capabilities that simplify time-consuming tasks,
including handling missing data or outliers, removing noise, and
time-aligning data with different sample rates

•	 Specialized machine learning apps to speed up your workflow,
letting you quickly compare and select algorithms

•	 Programmatic workflows for removing unnecessary features and
fine-tuning model parameters to achieve robust performance

•	 Tools for scaling the machine learning workflow to big data and
compute clusters

•	 Automatic code generation tools for rapidly deploying your analytics
to embedded targets

Prebuilt functions and algorithms support specialized applications, such
as deep learning, computer vision, finance, image processing, text ana-
lytics, and autonomous agents.

MATLAB for Machine Learning

20 | Mastering Machine Learning

Essential Tools for Machine Learning – continued

Access and Explore Data

Extensive data support:

•	 Work with signal, sound, images,
finance data, text, geospatial, and
other formats.

•	 Process and analyze signals.

Related products for accessing and
exploring data:

•	 Database Toolbox™

•	 Datafeed Toolbox™

•	 OPC Toolbox™

•	 Signal Processing Toolbox™

•	 Vehicle Network Toolbox™

Preprocess Data and Extract Features

High-quality libraries and domain tools:

•	 Use industry-standard algorithms
for feature extraction in finance,
statistics, signal processing, image
processing, text analytics, and
computer vision.

•	 Improve your models with filtering,
feature selection, and transforma-
tion.

Related products for
specialized applications:

•	 Computer Vision System Toolbox™

•	 Fuzzy Logic Toolbox™

•	 Image Processing Toolbox™

•	 Optimization Toolbox™

•	 Signal Processing Toolbox™

•	 Statistics and Machine Learning Toolbox™

•	 System Identification Toolbox™

•	 Text Analytics Toolbox™

•	 Wavelet Toolbox™

https://www.mathworks.com/products/database.html
https://www.mathworks.com/products/datafeed.html
https://www.mathworks.com/products/opc.html
https://www.mathworks.com/products/signal.html
https://www.mathworks.com/products/vehicle-network.html
https://www.mathworks.com/products/computer-vision.html
https://www.mathworks.com/products/fuzzy-logic.html
https://www.mathworks.com/products/image.html
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/signal.html
https://www.mathworks.com/products/statistics.html
https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/text-analytics.html
https://www.mathworks.com/products/wavelet.html

21 | Mastering Machine Learning

Essential Tools for Machine Learning – continued

Develop and Optimize Predictive Models

Interactive, app-driven workflows:

•	 Quickly train and compare models.

•	 Focus on machine learning, not on
programming.

•	 Select the best model and fine-tune
model parameters.

•	 Scale computation to multiple
cores or clusters.

Specialized apps and products for refining and
tuning your model:

•	 Classification Learner App

•	 Deep Learning Toolbox™

•	 Parallel Computing Toolbox™

•	 Regression Learner App

•	 Statistics and Machine Learning Toolbox™

Deploy Analytics to a Production System

High-quality libraries and domain tools:

•	 Get tools to translate analytics
to production.

•	 Generate code to deploy to
embedded targets.

•	 Deploy to a broad range of target
platforms and enterprise systems.

Related products for specialized
applications:

•	 HDL Coder™

•	 MATLAB Coder™

•	 MATLAB Compiler™

•	 MATLAB Compiler SDK™

•	 MATLAB Production Server™

https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/statistics/classification-learner.html
https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/help/stats/regression-learner-app.html
https://www.mathworks.com/products/statistics.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/compiler.html
https://www.mathworks.com/products/matlab-compiler-sdk.html
https://www.mathworks.com/products/matlab-production-server.html

Download
MATLAB Code for the Heart Sounds Classification Application

Watch
Machine Learning Using Heart Sound Classification Example (22:03)

Read
Big Data with MATLAB
What Is Deep Learning?
Introducing Deep Learning with MATLAB
Parallel Computing on the Cloud with MATLAB
Predictive Analytics

11/19© 2019 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks
for a list of additional trademarks.Other product or brand names may be trademarks or registered trademarks of their respective holders.

https://www.mathworks.com/matlabcentral/fileexchange/65286
https://www.mathworks.com/videos/machine-learning-using-heart-sound-classification-example-1515709249154.html
https://www.mathworks.com/solutions/big-data-matlab.html
https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/campaigns/offers/deep-learning-with-matlab.html
https://www.mathworks.com/products/parallel-computing/parallel-computing-on-the-cloud.html
https://www.mathworks.com/discovery/predictive-analytics.html

