MathWorks
AUTOMOTIVE
CONFERENCE 2023
North America

Lateral Control of Truck Platooning With RoadRunner Scenario

Seo-Wook Park, MathWorks

Why "Truck Platooning"?

- Truck platooning allows trucks to follow each other closely, thereby reducing air drag and improving fuel economy.
- Platooning also has the potential to increase vehicle capacity on highways.
- V2V allows the truck platooning to form an electronically "coupled" two or more trucks.

Reference: <u>US DoT FHWA</u> 1

Design of vehicle platooning controller with V2V communication

Platooning longitudinal control

- Truck-trailer kinematic model
- V2V communication
- A simple cuboid visualization

MathWorks AUTOMOTIVE CONFERENCE 2022

Truck platooning reference examples

R2022b

+ Lateral Control RoadRunner Scenario

R2023a

Truck Platooning Using Vehicle-to-Vehicle Communication

Simulate truck platooning application using V2V communication in Unreal Engine simulation environment.

- Platooning longitudinal control
- 3D visualization using the Unreal Engine
- **High fidelity** Three-Axle **Tractor Towing Three-Axle Trailer**
- V2V communication

- Platooning longitudinal and lateral control
- Lateral control by LKA MPC controller and linearized truck-trailer lateral dynamics
- Simulate the Simulink test bench with RoadRunner Scenario
- High-fidelity Three-Axle Tractor Towing Three-Axle Trailer
- V2V communication

Vehicle Dynamics Blockset Automated Driving Toolbox

Model Predictive Control Toolbox RoadRunner Scenario

Add Truck with Trailer to Scenario

R2022b RoadRunner Scenario

Lateral Control of Truck platooning with RoadRunner Scenario

Workflow

Workflow

Platooning Test Bench

- V2V Receiver/Transmitter
 - Receive the position and movement information of the other vehicles in the platoon
 - Transmit ego pose to the platoon
- Platooning controller
 - Longitudinal & Lateral Control
- Vehicle model
 - High-fidelity Tractor-Trailer Dynamics

Simulate RoadRunner Scenario with Simulink

Actor Behavior Simulink Model for Follower

Actor Behavior Simulink Model for Follower

V2X Sidelink SL-SCH Throughput (%) in EVA500 fading and AWGR

V2V Transmitter and Receiver

BSM (Basic Safety Message) by SAE J2735

Automated Driving Toolbox

Basic Safety Message (BSM) by SAE J2735

- SAE J2735 Data and message set dictionary
- Defines the Basic Safety Message (BSM)
 - Latitude, longitude, Elev
 - Speed
 - Heading angle
 - Steering wheel angle
 - Lat, long acceleration
 - Vehicle length, width


```
BSMcoreData ::=
                 SEQUENCE {
 msqCnt
                MsqCount,
 id
                TemporaryID,
 secMark
                DSecond,
 lat
                Latitude,
 long
                Longitude,
 elev
                Elevation,
                Positional Accuracy,
 accuracy
 transmission
                TransmissionState,
 speed
                Speed,
 heading
                Heading,
 angle
                SteeringWheelAngle,
 accelSet
                AccelerationSet4Way,
 brakes
                BrakeSystemStatus,
 size
                VehicleSize
```

For more details

Automated Driving Toolbox™

Actor Behavior Simulink Model for Follower

Longitudinal control

$$a_{ego} = C_1 a_{lead} + (1 - C_1) a_{front} - K_1 \left(v_{ego} - v_{lead} \right) - K_2 \left(L - \sqrt{\left(x_{ego} - x_{front} \right)^2 + \left(y_{ego} - y_{front} \right)^2} \right)$$

$$\varepsilon_i = L - \sqrt{(x_{ego} - x_{front})^2 + (y_{ego} - y_{front})^2}$$

Spacing error = ego - preceding car position

Plant Model - Truck-trailer lateral dynamics

$$M\dot{x} = Ax + Bu$$
$$z = Cx$$

$$M = \begin{bmatrix} m_1 & 0 & m_2 & 0 \\ 0 & l_1 & -l_6 m_2 & 0 \\ 0 & 0 & -l_7 m_2 & l_2 \\ 1 & -l_6 & -1 & -l_6 \end{bmatrix} \quad \begin{cases} x = \begin{bmatrix} \dot{y}_1 \\ \dot{\phi}_1 \\ \dot{y}_2 \\ \dot{\phi}_2 \end{bmatrix} \\ u = [\delta]$$

$$\mathbf{A} = \begin{bmatrix} \frac{-C_1 - C_2 - C_3}{\dot{\mathbf{x}_1}} & \frac{-C_1 l_1 + C_2 l_2 + C_3 l_3}{\dot{\mathbf{x}_1}} & \frac{-C_4 - C_5}{\dot{\mathbf{x}_1}} & \frac{C_4 l_4 + C_5 l_5}{\dot{\mathbf{x}_1}} - m_2 \dot{\mathbf{x}_1} \\ \frac{-C_1 l_1 + C_2 l_2 + C_3 l_3}{\dot{\mathbf{x}_1}} & \frac{-C_1 l_1^2 - C_2 l_2^2 - C_3 l_3^2}{\dot{\mathbf{x}_1}} & \frac{-C_4 l_6 - C_5 l_6}{\dot{\mathbf{x}_1}} & l_6 \left(\frac{-C_4 l_4 - C_5 l_5}{\dot{\mathbf{x}_1}} + m_2 \dot{\mathbf{x}_1} \right) \\ 0 & 0 & \frac{C_4 l_7 + C_5 l_7 + C_4 l_4 + C_5 l_5}{\dot{\mathbf{x}_1}} & \frac{-C_4 l_4 l_7 - C_5 l_5 l_7 - C_4 l_4^2 - C_5 l_5^2}{\dot{\mathbf{x}_1}} + l_7 m_2 \dot{\mathbf{x}_1} \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{C_4 l_4 + C_5 l_5}{\dot{\mathbf{x}_1}} - m_2 \dot{\mathbf{x}_1}$$

$$l_6 \left(\frac{-C_4 l_4 - C_5 l_5}{\dot{\mathbf{x}_1}} + m_2 \dot{\mathbf{x}_1}\right)$$

$$\frac{-C_4 l_4 l_7 - C_5 l_5 l_7 - C_4 l_4^2 - C_5 l_5^2}{\dot{\mathbf{x}_1}} + l_7 m_2 \dot{\mathbf{x}_1}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 \dot{x}_1 : forward velocity of tractor is not included in the state vector to make the system linear.

Actor Behavior Simulink Model for Follower

Workflow

Workflow

RoadRunner Scene & Scenarios

<u>Control objective</u>: The truck follows a lane center of a curved road while maintaining a predefined space between vehicles in a platoon.

Longitudinal control

scenario_Platooning_02_HighCurvature

Longitudinai coi

scenario_Platooning_01_CurvedRoad

Leader car slows down at the start of high curvature

How do the followers react?

RoadRunner scene equivalent to Unreal default scene – Curved Road

RoadRunner Scene & Scenarios

Control objective: The truck follows a lane center of a curved road while maintaining a predefined space between vehicles in a platoon.

Scenario authoring using RoadRunner Scenario

"How to author scenarios using

RoadRunner Scenario?"

Scenario authoring using RoadRunner Scenario

Workflow

Workflow

scenario_Platooning_01_CurvedRoad

scenario_Platooning_02_HighCurvature

scenario_Platooning_03_DecelAndStop

scenario_Platooning_04_CutInFrontOfLeader

Key takeaways:

Lateral Control of Truck Platooning With RoadRunner Scenario

- Demonstrated how to design a platooning test bench model consisting of
 - Platooning longitudinal and lateral controller
 - High-fidelity 6 DOF tractor-trailer model
 - V2V communication
- Implemented the platooning lateral controller using
 - Lane-keeping assist Model Predictive Control
 - Linearized truck-trailer lateral dynamics
- Simulated the Simulink test bench with RoadRunner Scenario

- Automated Driving Toolbox
- Vehicle Dynamics Blockset
- Simulink

 Model Predictive Control Toolbox

- RoadRunner
- RoadRunner Scenario
- RoadRunner Asset Library

MathWorks AUTOMOTIVE CONFERENCE 2023 North America

Thank you

Please contact me at spark@mathworks.com with questions

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.