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Quick Glance at Deep Learning

A brief Introduction:

1943 - Walter Pitts and Warren McCulloch, gave us that piece of the puzzle
when they created the first mathematical model of a neural network.

1946 - John Mauchly & J. Presper Eckert develop world’s first digital
computer ‘ENIAC’.

1952 — Arthur Samuel writes the first computer program capable of
learning.

1958 — Frank Rosenblatt designs the Perceptron, the first artificial
neural network.

What has fueled the development of deep learning?

1.
21
3.

Explosion of data.
Cheap computing cost - CPUs and GPUs.
Improvement of machine learning models.



Quick Glance at Deep Learning

Evolution of Deep Learning

ARTIFICIAL
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Since an early flush of optimism in the 1950, smaller subsets of artificial intelligence - first machine learning, then
deep leaming, a subset of machine learning - have created ever larger disruptions.



Quick Glance at Deep Learning

Evolution of Deep Learning
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Quick Glance at Deep Learning

Deep Learning revolutionized Machine learning:
* Deep learning don’t need to provide features ahead of time, it learns features
at different levels by itself.

* Same deep learning architecture can be trained to accomplish different
tasks.

Machine Learning

e\ 523

Input Feature extraction Classification

Deep Learning

Input Feature extraction + Classification

Qutput




Quick Glance at Deep Learning

Deep Learning revolutionized Machine learning:
* Deep learning don’t need to provide features ahead of time, it learns features
at different levels by itself.

* Same deep learning architecture can be trained to accomplish different
tasks.
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Quick Glance at Deep Learning

Major area of research

* Jennifer Aniston
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Quick Glance at Deep Learning

Applications in various sector

[

= Predictive maintenance or
condition monitoring
Warranty reserve estimation
Propensity to buy
Demand forecasting
Process optimization
Telematics

Manufacturing

\

-

= Aircraft scheduling

= Dynamic pricing

= Social media - consumer
feedback and interaction
analysis

= Customer complaint
resolution

= Traffic patterns and
congestion management

Travel and

Hospitality

Retail

Financial Services

~
Predictive inventory planning
Recommendation engines
Upsell and cross-channel
marketing

Market segmentation and
targeting

Customer ROI and lifetime
value

\iJ

Risk analytics and regulation
Customer Segmentation
Cross-selling and up-selling
Sales and marketing
campaign management
Credit worthiness evaluation

|l

\

= Alerts and diagnostics from
real-time patient data

= Disease identification and risk
stratification

= Patient triage optimization

= Proactive health
management

= Healthcare provider
sentiment analysis

Power usage analytics
Seismic data processing
Carbon emissions and trading
Customer-specific pricing
Smart grid management
Energy demand and supply
optimization

Energy, Feedstock,
and Utilities




SR-30 Gas Turbine Engine

Fig : Cross-sectional view
of laboratory SR-30
engine
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Why Engine Model is Necessary??

‘\
To assess real world Ease of dynamic
phenomena simulation

< >

adverse dynamic for performance
conditions optimization

L Investigating strong J { Cost saving strategy J

v

Fault diagnosis &

Sensor validation detection
Model applications =)
Design and Condition monitoring
optimization of Or engine health

control system monitoring



Dynamic Model of SR-30 Engine

Objective:

Develop a non-linear dynamic engine model.
Simulate the steady state and transient performance.

Integrate the developed gas turbine model with multi-
disciplinary systems.

Challenges:

Experimental data

Characteristics map of engine components.
Tuning of characteristics maps.

Simulate the model over full operating range.




Approaches for Modeling Dynamic Systems

.

“White-box”
models

e Analytical models
e First principles models

J

.

,Grey-box”
models

e Hybrid models

J

-

“Black-box”
models

e Empirical models
e Data-driven models

J




Problem Statement

l Radial Compressor l Turbine
p : - —> P2
Inlet —
pressure > T2
— P3
Input Ambient > B —> T3 Vecl)rlil:lll))lllets
Variables temperature
—> P4
—> T4
Fuel flow —> N
Fuel
Injector
Inlet s Nozzle
COmMpressor Combustion Turbine
chamber
0 1 2 3 4 =]

Fig : Illustration of input and output variables of the model
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First Principle Modeling Approach

State variable method:
1 - Selection of state Variable
x = [P, P, NJ
2 - Compressor calculation

(P2 N ) Compressor map ( . )
P > (Mg, N,
P, T,

isentropic equation

(T1:77C'PR21) > (T3)

W, = 1iecy(T, — Ty)
3 - Combustion chamber
(P 2 Ucc) = P;

Energy balance

(LHV, m,, Tflf) > T3

4- Turbine calculation

P3 N turbine map A
P’ > (1, 1)
4 \/ T3
isentropic equation

(T5,M¢, PR34) > (Ty)

Wl’ = 7bhth(T3 Ty T4)

5- Nozzle equation

<P4) nozzle map

=) 2 G
S
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First Principle Based Engine Simulator
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Fig : Component-wise Simulink Model of SR-30 Gas Turbine Engine 16



First Principle Based Engine Simulator
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Fig : Closed loop Model of SR-30 Gas Turbine Engine along with dashboard tool 17



Motivation for Data Driven Techniques

1. White-box or First principles modeling approaches rely on
thermodynamic and energy balance equations. Hence, assumptions and
linearization methods are required to simplify and solve complex dynamics.

2. Models and control systems designed using simplified linearized
equations are not accurate enough to capture system dynamics precisely.

3. The unavailability of component maps is also one of the key reason to
shift on data driven modeling techniques.

4. Thus, Deep learning is a fair alternative to white box model as it is
independent of the system dynamics with an objective of maximize system
robustness, output power and efficiency.



Neural Network Architecture

The model can be mathematically represented
as

y(©) = £ (y(t - 1), Y{t - 2y, Yt - 0 )

where y (.) is Output, u (.) is Input and n
represents the Delay unit.

layer 2 (hidden layer)

layer 1 (Input layer)

layer 3 (output layer)

Fig : Network Architecture
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Neural Network Architecture

How to build Deep neural network?

The model can be mathematically represented

as. [ Collect data ]
Y(t) = f (Y(t - 1); Y(t - 2)1 ------ ’ Y(t - n y)! l
u(t-1), u(t - 2),......, u(t-n,)) | Preparethedata |
[
I
where y () is Output, u (.) is Input and n [ createnetwork |
represents the Delay unit. !

[ Configure the network ]

layer 2 (hidden layer) l
[ Train the network ]

layer 1 (Input layer)

layer 3 (output layer) [ Test the network on unseen data ]

‘@ If RMSE large

¥

[ Use the network ]

Fig : Network Architecture 56



LSTM Network Architecture

output
b recurrent

FO rget gate: block output ‘0;9 :i?_'i"em

r

fe = J(Wf[}"r—laxr] + bf) LSTM block ¥

peepholes

Input gate
i, = o(Wilye_s, x:]1 + by)
€, = tanh(W.[ye_1,x.] + b.)

Cell memory state
Cr= fr*Ceq +ir*C

input

input

input

Output gate

or = o(W,ly: 1,21+ b,)
¥: = 0 * tanh (C;)

input recurrent

Where: W is weight, b is bias, x is input Fig : Detailed schematic of LSTM block
data, y is target data.
s 1
tanh(x) = pperal WAL TSI AR 21



Network Configuration

<\ MATLAB R2018a - trial use _

[m] =
EDITOR B £ & <9 e 2 'I Search Documentation el
[ Find Files = Insert e - . ~ ) s
EE:I E % II? = = & D % L%] Run Section K_L:P
1zl compare = o GoTo ~ Comment S5 “ge ]
Mew Open Save — Breakpoints Run Run and @Mvanoe Run and
- - - = Print = L4 Find = Indent doz| |z - - Advance Time:
FILE NAVIGATE EDIT BREAKPOINTS RUN =
<= EE » E: » richasingh » PhD » matlab_18 work » LSTM_simulink model_neural » - 2
Current Folder (]
Name | MIMO_ZIGZAG_test.m |+ |
sr-30_modified model i) This file can be opened as a Live Script. For more information, see Creating Live Scripts. =
El-| GT_experiment.csv . . —
8 | GT_old_data_prbs.csv 51 — inputsize = 3; -~
EEl matlab.rnat Sz |= numResponses = 7;
Y MIMO_ZIGZAG_test.m i i
E-| mini_lab_aero_data_l.csv SE|= numHiddenUnitsl = 24;
- - -
£] MISO_testing_example.m 54 — numHiddenUnits2 = 20;
(.| SISO_TEST.csv
#7 siso_testing_example.m 55
|| Zigzag_mimo.dat 56 — layers = [ ...
57 sequenceInputLayer (inputsize)
58 lstmLayer (numHiddenUnitsl)
59 lstmLayer (numHiddenUnits2)
60 fullyConnectedLayer (numResponses)
GT_old_data_prbs.csv (Microsoft Excel Com.., 61 regressionLayer] ;
Workspace <] 62
MName Walue 63 — opts = trainingCptions('adam', ...
] data_mimo 7308x12 double ~ 64 'MaxEpochs',250, ...
H data_minMo 720810 double N
FH data_size 7308 65 'GradientThreshold',1, ...
% i 1461 66 'InitialLearnRate',0.005, ...
inputSize 3 R ~
1 j 7 &7 'LearnRatesSchedule’', 'piecewise', ...
% :‘ i 68 'LearnRateDropPeriod' 125, ...
(& layers 5x, Layer 69 'LearnRateDropFactor' , 0.2, ...
H rau_XTest [107.4929,308.6166,14... 70 'verbose',0, ...
HH mu_XTrain [107.9147,308.8272,14... T
FH mu_¥Test [5.5124e+04,406.4763... 71 'Plots', 'training-progress') ; -
i rmu_¥Train [5.6280e+04,411.5672... L >
- script Ln 59 Col 31 Trial Days Remaining: 22 22




Model Validation Against Experimental Data

The validation results of First principle model as well as Deep learning based
model against experimental data is represented for shaft speed (full range RPM)

Shaft Speed (RPM)

<104

7.5

6.5 |- f ............... — -

6 I e ——— -
\f experimental

5.5 First principle -
Deep learning

(0] 2l0 4l0 6.0 8.0 1 (;0 1 éO 140
Time (sec)
Fig: Shaft speed validation using First Principle model
and Deep Learning model
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First Principle Model Validation Against
Experimental Data
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Deep Learning Model Validation Against
Experimental Data

Compressor exit temperature (K) Compressor exit pressure (KPa)
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Deep Learning Model Validation Against
Experimental Data
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Relative Error of predicted data against
experimental data | |

Yexp — Ypred

Err r—lz
TN

Parameter Deep Learning First Principle
Approach Approach

Ye@

P2 0.0012 0.0112

P3 0.0011 0.0255

P4 0.0036 0.0721
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Conclusions

First Principle based method promises good dynamic behavior
when compared with the real time engine, provided that enough
information is available.

The deep learning model is trained with a set of experimental data
which makes the model to learn a wide variety of engine behavior.

The Deep Learning approach when compared with the First
Principle model against experimental data is found to be more
efficient in predicting behavior of system.

LSTM performs good with MIMO system, however LSTM has its
own disadvantage: it is slower than other normal activation
functions which leads to the trial & testing process to be more slow.



Why Matlab & Simulink?

» Easy user-interface
e Less programming required while working in Simulink.

* Toolboxes are designed to integrate with parallel computing
environments, GPUs, and automatic C code generation.

 Documentation is written for engineers and scientists, not
computer scientists.

e Inbuilt functions are available that are required in day-to-
day computation.

« MATLAB App let you start working right away and then
automatically generate a MATLAB program to reproduce or
automate your work.



Future Steps in Modeling and Control of Engine

Comparison of First Principle based and NN Based GT Model

Input pulse

Actuator block
First Principle based model

|éNeural Network
based Model

N1
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