

Modeling of a Warship's Electrical Power Generation and Propulsion System

Paul Norton Chief Marine Engineer (Electrical), DLO, UK Ministry of Defence

Dr Andrew Bennett Senior Engineer, Consulting Services, The MathWorks

UK Ministry of Defence

- Defence Procurement Agency (DPA)
 - Specify and procure the ships
- Commander in Chief Fleet (Fleet)
 - Operate the Ships
- Defence Logistics Organisation (DLO)
 - Maintain and support the Ships
- Simulation supports all phases of activity, DLO leads this.
- UK MoD is adopting Electric Power and Propulsion The Electric Ship Programme

Why UK MoD adopting the Electric Ship?

- Reduced LCC (Life Cycle Cost)
- Flexibility operational and layout
- Fight-Through/Ride-Through Capability
- Reduced Acoustic and Infra-Red Signatures
- Compliant with emerging environmental legislation
- Compatibility with future weapons

MATLAB[®] SIMULINK[®]

Type 45 – HMS Daring

Simulation being used to predict performance and even for acceptance

MATLAB[®] SIMULINK[®]

Type 23 – HMS Argyll

Simulation being used to compare potential upgrades as well as resolve in service power system issues

LPD – HMS Albion

Extensive simulation being used to predict the performance and manage issues

Scope of Naval Vessel Simulation LPD

- Develop a model of a power / propulsion system
 - Generation (prime movers, alternators and control)
 - Distribution (cables, filters)
 - Propulsion (drive, PM, propeller and ship)
- System Objectives
 - Dynamics associated with Platform motion
 - Voltage and frequency transient stability
 - Harmonics, including during transient events
 - Behaviour in extreme conditions
 - Interaction with PMS
- These system objectives define the system model

Component Oriented Approach

- Each entity within the model corresponds to an entity within the system.
- Structure of model reflects the structure of the system
 - Better advertises its purpose
 - Facilitates decomposition of development effort
 - More likely to support component re-use
 - Scales to large models involving multi-disciplinary teams
- Define interfaces between components
 - Compatible with contractual boundaries
 - Permits further development in parallel
- Define the characteristics the component must have
 - Based on system objectives

FullShip

Model, Parameter and Results Management

Major challenge:

Parameters, scenarios, report generation, traceability

Component	Parameters	Measurements	Blocks	States
Prime movers	64	41	465	33
Converter	7	66	783	26
Propulsion motor	7	36	469	8
Ship / shaft	10	8	81	2

Scope of the System Model

- Each system objective suggests a feature of the system model and a timescale of analysis:
- Platform motion (Acceleration, Manoeuvring, Crash Stop)
 - Shaft/propeller/hull model
- Voltage and frequency response (Stability)
 - Prime movers & generators with appropriate governors and AVRs
- Harmonics (THD)
 - Power electronics

Results: Platform motion

- Shaft Speed
- Ship Speed
- Minutes

Results: Voltage and frequency response

 Absolute Power

The MathWorks

- Relative Power
- Seconds

Scope of the System Model

Each system objective suggests a feature of the system model and a timescale of analysis:

- Platform motion (Acceleration, Manoeuvring, Crash Stop)
 Shaft/propeller/hull model
- Voltage and frequency response (Stability)
 - Prime movers & generators with appropriate governors and AVRs
- Harmonics (THD)
 - Power electronics

MATLAB[®] SIMULINK[®]

Example: Harmonics

System Objective: "The system model should permit measurements of THD during transient events."

The variable speed propulsion drive component model must generate representative harmonic distortion.

Model: power electronic devices, switching logic

Therefore:

- Development Process = Decomposition Process
- The developer must map the system objectives onto the model

Propulsion Converter

Natural Hierarchy

The MathWorks

- Each component has further subcomponents
- A component oriented approach for component development
- Such decomposition of components was applied to the entire system

Maximum PSD (dB)

Results: Harmonics

SpecSlice - Generation side - Voltage

130

- Harmonics at steadystate vs. transient
- Milliseconds

_ 🗆 🗵

Results: Propulsion Harmonics

- Propulsion:
- Terminal Voltage
- Spectrogram
- THD
- Milliseconds

Results: AC Network Harmonics

- Generation:
- Terminal Voltage
- Spectrogram
- THD
- Milliseconds

Results: Summary

- Timescales of order minutes
 - Time from rest to full ahead
 - Time to crash stop
- Timescales of order seconds
 - Voltage / frequency transient stability
- Timescales of order milliseconds
 - Harmonic content as a function of operating point
 - Harmonic content during transient events
- Can exercise the model against requirements
 - Manoeuvring requirement
 - Transient stability and Quality of Power Supply
 - DefStan / MilStan and Lloyds / ABS

Challenges

- Standard approach to modeling
 - Agree standards for model interfaces
 - Agree standards for model quality and acceptance
 - UK DefStan in preparation
- Technical challenges
 - Increasing complexity of systems
 - Execution time for complex models
 - Distributed simulation (cluster of PCs)
- Possible further expansion
 - Stability margins
 - EMC/EMI and noise/vibration prediction
 - Future weapons and launching interface

Summary

- Large-scale high fidelity system modeling
 - Feasible, over wide range of timescales of interest
 - Platform motion
 - Voltage and frequency response
 - Harmonics
 - Exercise the model against relevant standards / requirements
 - Results inform both
 - new design
 - in-service support
- UK MoD use Simulink/SimPowerSystems as the package for Marine Systems Modeling
- Provides commonality with other navies

Modeling of a Warship's Electrical Power Generation and Propulsion System

Questions

