

Using Model-Based Design to Design Real-Time Video Processing Systems

Bruce Tannenbaum

Image Processing Applications Marketing Manager The MathWorks bruce.tannenbaum@mathworks.com

MathWorks Aerospace and Defense Customers Video and Image Processing Application Examples

Autonomous Vehicles

Night Vision

Targeting

FLIR

Heads-Up Display

Satellite

Demo: Abandoned Object Detection

Embedded Video Design Challenges

- Extreme computation demands
- Embedded system resource constraints
 - Target hardware: DSP, FPGA (fixed-point)
 - Real-time requirements
- End-product focus on price, power, performance, and size
- Testing and validation of results

Model-Based Design with Simulink®

How is this useful for video?

- Implicit timing and concurrency
- Extensive algorithm library
- Fixed-point modeling
- C code generation

Video and Image Processing Blockset

Model, simulate, implement, and verify real-time video and imaging systems

- Includes more than 60 components and 100s of algorithms
- Focused on implementation of embedded systems

Original Video

Stabilized

Demo: Edge Detection

Demo: Abandoned Object Detection

Fixed-Point Modeling*

- Avoid inaccurate results due to finite word effects
- Access tools built directly into block interfaces
- Easily change parameters to model the impact of rounding, overflow, and scaling

* Requires Simulink[®] Fixed Point for integer and fixed-point data types

C-Code Generation

Breadth - Support for all embedded processors that support ANSI C

- Real-Time Workshop[®]
- Real-Time Workshop[®] Embedded Coder

Depth - Examples of processor specific enhancements

- Link for Code Composer Studio[™]
- Embedded Target for TI C6000[™] DSP
- MathWorks Consulting
- Third-party products

MATLAB[®] SIMULINK[®]

Link for Code Composer Studio[™] and Embedded Target for TI C6000[™] DSP

- Production code generation
 - Processor-specific, optimized code
- Project automation

The MathWorks

- Processor-specific, automatic
- APIs for Code Composer Studio IDE, compiler, and linker
- Rapid prototyping
 - Target-specific and integrated
 - Simulink hardware blocks and device drivers (ADC, DAC, RTDX, daughter cards)
- Hardware Support
 - Development Boards: TI C6701 EVM, 6711 DSK, 6713 DSK, C6416DSK, and DM642 EVM
 - DSPs: TI DM64x, C64x, C62x, and C67x families

MATLAB&SIMULINK®

The Value of Model-Based Design

Innovation

 Rapid design iterations and "what-if" analyses

Quality

Reduced design errors

Cost

.

-

Reduced expense from physical prototypes and re-work

Time-to-market

Get the product right the first time

Where Errors Are Introduced ... and Detected

"Each delay in the detection and correction of a design error makes it an order of magnitude more expensive to fix."

> Clive Maxfield and Kuhoo Goyal "EDA: Where Electronics Begins" TechBites Interactive, October 1, 2001 ISBN: 0971406308

Source: "Migration from Simulation to Verification with ModelSim[®]" by Paul Yanik. *EDA Tech Forum*, 2004 Mar 11, Newton MA MathWorks

MATLAB[®] & SIMULINK[®]

User Story: Doheny Eye Institute Enables the Blind to See with MathWorks Products

The Challenge

To develop a retinal prosthetics proof-of-concept prototype that interfaces with a permanent microelectronic retinal implant enabling the blind to see

The Solution

Use MathWorks products for Model-Based Design to model, simulate, and generate rapid prototype of prosthetic vision system

The Results

- Completed phase II of research project ahead of schedule
- Currently in trials with patients through Doheny Eye Institute at University of Southern California

Visor Prototype

"We are working on real-time image processing with the TI DM642 processor as the target. The Video and Image Processing Blockset makes the task of creating our design and working prototypes much simpler."

> Dr. James Weiland Director, Intraocular Retinal Prosthesis Lab Doheny Institute

Thank You

