
A User’s Experience with Simulink® and Stateflow® for
Real-Time Embedded Applications

James E. Craft and Bob Rusk, Lockheed-Martin Missiles and Fire Control
Unclassified

Lockheed Martin Corporation

Unclassified

140,001 Employees
65,000 Scientists and Engineers
23,000 IT Professionals, Systems and Software
Engineers

LMC writes more code than Microsoft

My Experience:
MSSE, Software Engineer for 25 years
Lean Six Sigma Blackbelt
C++ and UML Instructor (UML Subject Matter Expert)
Software Developer, Software Development Lead
Software Architecture, CMMI Maturity

Project Experience:
Comanche
Sniper/ATP
AGS LRLAP
MRM

Why Do We Model ?

The short answer – to avoid spectacular failures !
Swedish Naval Warship, Vasa (1625)
NASA Mars Climate Orbiter
Denver airport baggage handling system
FBI's Virtual Case File system
Talking Barbie

Modeling gives us a blueprint of the system
before we build it

Sketch
Blueprint
Executable Design

Modeling provides a shared understanding
between the customer, the SME, the
Systems Engineer, the Software developer,
and the tester

Unclassified

Late Defect Identification is Costly

Traditional testing approaches result in defect discovery late in the process
Relatively little improvement over past 20 years*

Unclassified
*Source: Boehm, Barry. Software Engineering Economics. Edgewood Cliffs, NJ: Prentice-Hall, Inc., 1981

Boehm, Basili, “Software Management.” IEEE Computer, January 2001.

Late Defect Discovery
Results in Significant

Rework

R
at

e
of

 D
is

co
ve

ry

TimeRequirements Design
& Build

Release
to Test

Release
to Field

Defects

WASHINGTON (COMPUTERWORLD) - Software bugs
are costing the U.S. economy an estimated $59.5 billion
each year, with more than half of the cost borne by end
users and the remainder by developers and vendors,
according to a new federal study.

100X Increase in Cost of Removing Defects

Using Model-Based Design in Embedded
Real Time Systems

What is Model-Based Design ?
MBD is an approach to software development where extensive models are
created before source code is written.

Using MBD to address the new “Software Challenge”
More software
Mounting complexity of software
Decreasing number of electronic components
Cost, cost, cost

Unclassified

System Complexity

A
bs

tr
ac

tio
n

C

Assembler

C++

C#, Java

Model design

Fitting MBD into Lockheed’s Product
Development Process

Requirements
Creating the correct system
Use Case analysis
Data stores, msg transfers, component interfaces

Test
Model checking, test coverage
Allows validation of requirements without significant

investment in implementation

Peer Reviews

Lean Development
Separate computational code and behavioral code

Agile Principles (Agile Modeling)
Iterative modeling (build a little, test a little…)

Working within CMMI® Level 5 Environment
Code reliability, optimization
Component based software
Code analysis, Metrics

Unclassified

Cost Implications for Model-Based Design

Unclassified

Upfront Costs Pay Off With Increased Efficiency

Time

Cost Efficiency

Time

Cost Efficiency

Upfront Costs of Model-Based
Design

Tool/license costs
Learning Curve

• Formal training
• On-the-job experience

Construction of models

Efficiencies Gained with Model-Based Design

Eliminates human translation of design into software
Peer reviews focus on consistency between documented design and

implemented software
Engineering effort focuses on correctly defining, designing, and testing

software

Special Challenges for Embedded Real Time
Applications

Optimization strategies
Mapping to Target Processors
Timing
Throughput

Unclassified

Software Failure Levels

Software Safety (DO-178B)
Safety Assessment Process
Hazard Analysis
Examines the effects of a failure condition in the system

Cost and Reliability
Quality
Mission success

Software Life Cycles
Waterfall, Spiral, Agile

MATLAB®, Simulink® and Stateflow® Models

Unclassified

MATLAB® and Simulink® form the core environment for Model-based Design
for creating accurate, mathematical models of physical system behavior.

Graphical Software Building Blocks

Graphical Software Model

Stateflow® for logical processes

Simulink® for mathematic/control processes

Meeting the Challenge

Use of MBD in Defense and Aerospace Applications

2000 2004 2005

WIN-T (BAE
Systems CNIR)

2007

Technologies

• RT OS (VMX)

Aircraft Flight

JSF CDA 2000JSF CDA 2000
T- 50 2002T- 50 2002
F16 Blk60 2003F16 Blk60 2003

2005WIN-T 2005WIN-T

AFTI/F-16 19821982
F-16 Quad Demo 19831983
F-16 DFCS 1986- 1986
F-111 DFCS 19891989
IDF (Taiwan) 19891989
YF-22 1990YF-22
F-16 / MATV 1993
F-22 1997
F-16XL DFCS 1997F-16XL DFCS 1997

JSF 2006JSF

X-40A Space
Vehicle
(Boeing)

K-1 1998K-1 1998

Kistler K-1 (GenCorp)

X-40A 2000X-40A 2000

F-35
(Lockheed)

F-22
(Lockheed)

X-43A ScramJet
(NASA)

F-16 (Lockheed)

2006LRLAP SDD

2004X-43A 2004X-43A

1980s 1990s 2006

LRLAP SDD

LRLAP builds on heritage of Simulink in Aerospace and Flight Systems …
Unclassified

Avg Lines of Handwritten Code Per Developer

0

2000

4000

6000

8000

Industry Avg MBD Project

7514
4315

Total Lines of Code Per Project

640000

660000

680000

700000

720000

Industry Avg MBD Project

667600

710000

3.4

3.6

3.8

4.0

4.2

MBD Project Non-MBD Project

Avg Months Behind Schedule

4.2

3.7

Developers that use MBD in their designs are able to manage (year over year) more design
starts and completions than the industry average. This translates into higher productivity and
greater savings for the organization.

Industry Usage of MBD

Recent surveys comparing coding efficiencies
and schedule impacts for MBD programs show
improved performance factors.

Source: What Do You Do When the Horse You Are
Riding Drops Dead?, Jerry Krasner, Embedded Market
Forecasters, March 2007

Process Examples of Simulink® Model
Development for Automatic Code Generation

Unclassified

Project A
Develops models using well defined Simulink Coding standards
The Model is the source and the generated “C” is treated like object code

Project B
Core Simulink Building Blocks are validated and all models are required to

use only the validated building blocks
The Model is the source and the generated “C” is treated like object code

Project C
Develops models using well defined Simulink Coding standards
Using Mathworks 178B guidelines from Bill Potter
Uses scripts and configuration files to enhance readability of generated “C”

source
The Model is the detailed design and the “C” code is the source
Follows a more standard software development process

Long Range Land Attack Projectile

SAIC is subcontracted to Lockheed-Martin for the
GNC subsystem

Unclassified

LRLAP is part of a family of
155mm projectiles for the
Advanced Gun Systems on the
U.S. Navy's next-generation
DDG-1000 destroyer

Provides single-strike lethality
from offshore against a wide
range of targets

Multiple payloads and multiple
guidance approaches

Initial concept focused on long-
range land attack requirement

Tactical Design Overview

LRLAP gives DDG-1000 warships the ability to provide interdiction, suppression
and other fire support missions to support ground and expeditionary forces.

Unclassified

GN&C Payload Propulsion Tail

• Guidance
Electronics

• Control System

• Warhead • Rocket Motor • Fins

Video - Navy Advanced Gun System (AGS) Non-combatant Evacuation Simulation
Scenario

http://youtube.com/watch?v=ilwIhIwf5yI
http://youtube.com/watch?v=ilwIhIwf5yI

GNC Applications

Unclassified

IMU Subsystem

GPS Subsystem

Autopilot

Navigation Algorithms

Guidance Laws

Control Subsystem

Wind Models

Provides pitch, roll and yaw rates

Detects current position based on GNSS constellation

Provides automated vehicle guidance and control

Plans and records position compared to known locations

Evaluates sensor readings and course data to determine
speed and heading

Provides mach speed and dynamic pressure

Flight control surfaces used to stabilize and direct the vehicle

Guidance, Navigation and Control applications are prime
candidates for Simulink modeling and simulation

Ja
n-0x

Feb
-0x

Mar-
0x

Apr-0
x

May
-0x

Ju
n-0x

Ju
l-0

x

Aug-0x

Sep
-0x

Oct-
0x

Nov-0
x

Dec
-0x

Month

SL
O

C
/H

ou
r

Program A
Program B
Simulink Based Program
Program C
Program D
Prior year
10% Goal
Program E
Average

`

Software Productivity Using Simulink®

With Simulink®, the model-
based program outperformed
other software programs by
more than 2-to-1 !!!

Unclassified

“Similar to” diagram

Overall LRLAP Experience with MBD

Successes
LRLAP is the longest-range guided projectile in U.S. history
Nine Successful Flight Tests with No Software Errors
Cost & Safety: Reduced Software Defects (Early Checkout in

Engineering Simulations)
Verification: Rapid Prototyping to Analytical and Real-Time Simulators
Verification: Reduced Testing (Unit Test and Standalone)
Cost: Overall Reduction in Manhours/SLOC

Challenges
Process: Handcode to Auto Generated Code Integration
Tool: Interface Control and Management on Large-Scale Model
Resources: Auto Code Efficiency (Memory, Throughput)
Training: Turning Control Law Designers Into Software Engineers
Optimization of automatic code generation (readability, standards, CM
procedures)

Unclassified

Tools That We Use

Unclassified

DOORS®

RTW®

MATLAB®

Razor®

Rational Rose®

MS Visual
C++®

Simulink®
/Stateflow®

WindRiver
Tornado®

RiskRegister®

Decision Making for Auto Code Generation

Unclassified

Assembly of message, calculation of message data, etc

Data movement, arithmetic operations, etc

SDLC drivers, FireWire drivers, etc

Capsules, Classes, Interfaces, Protocols

Guidance, Navigation, and Control algorithms, math
models

Examples

Message Data

Internal Logic

Device Drivers

COTS or hand-codedOperating Systems

Rose Structural

Algorithms

Method/ToolCategory

Assembly of message, calculation of message data, etc

Data movement, arithmetic operations, etc

SDLC drivers, FireWire drivers, etc

VxWorks®, Nucleus®, etc

Capsules, Classes, Interfaces, Protocols

Guidance, Navigation, and Control algorithms, math
models

Message Data

Internal Logic

Device Drivers

Operating Systems

Rose®Structural

Simulink® auto
code generation

Algorithms

COTS or hand-coded

Hand-coded

Hand-coded

Challenges for autocoding certain categories of software
If a tool lacks the features to adequately model software category
Sometimes less efficient to model versus hand-coding
If modeling causes negative side effects on system simulation run time
If resultant auto generated software executes inefficiently

Simulink®
Auto Generated Code

Subsystem
Hardware
Models

GNC
Software
Models

Continuous
Physics
Models

Effective Simulink® Usage Produces Software From Model-based Design
Unclassified

Simulink® and Auto Generated Code

Simulation
Tool System performance
evaluation
Requirements definition
support

Automatic code generation
Model blocks translated to comparable code constructs
Embedded software & real-time simulation software can
be generated

Simulink® Auto Code Quality

Unclassified

LMMFC Simulink® Modeling Style Guide ensures readable,
maintainable software is generated

Characteristics of Simulink® generated software
Generated software structurally matches Simulink® model
Comment-to-Lines of Code ratio is developer controlled

• Simulink® comment blocks
• Comment fields with model blocks

Developers can control variable names
• Unique model block names
• Unique model block input/output port name

Well-styled Simulink® models become part of the Software
Design Document (SDD) and Algorithm Description
Document (ADD)

Summary

Significant Reduction in Software Anomalies Through
Early Prototyping and Evaluation
Significant Reductions in Manhours/Source Lines of
Code with Model-Based Software and Automatic Code
Generation
Produced Excellent Flight Test Results in Very Complex
Development Effort with NO Compromises to Flight
Safety
More Requirements-Focused Development Process
Leveraging Off Heritage Relationships with Mathworks
to Mature Modeling Environment and Code Generation
CMMI Process More Ingrained into Graphical Model
Development and Review

Unclassified

Future Plans

Code Readability
Configuration Parameters
Auto coding Standards
Templates (Code Headers)

Software Configuration Management
Managing Release Issues
Model Revisions (Check-in, Check-out)

Design Issues
Linking Simulink® with Rose®

SysML, DODAF
System of Systems

Unclassified

	Simulink® and Auto Generated Code
	Simulink® Auto Code Quality

