

Hardware-Software Implementation With Model-Based Design

Sudhir Sharma

Product Manager, HDL Code Generation And Verification The MathWorks

Agenda

- What is the System Design Challenge
- Solutions for Embedded Software Development
 - Automatic Code Generation
 - Verification
- Solutions for Hardware Development
 - Automatic Code Generation
 - Verification

System design to implementation gap

Algorithm and System Design

Integrated Design Flow for Embedded Software and Hardware

 Design, simulate, and validate system models and algorithms in MATLAB and Simulink

The MathWorks

- Automatically generate production software for <u>embedded processors</u>
- <u>Verify the software</u> implementation against the system model
- <u>Verify the hardware</u> implementation against the system model

Case Study: Sobel Edge Detection Algorithm

Floating-Point System Specification

Start by developing a golden specification

MathWorks

Aerospace and Defense Conference '07

Fixed-Point Modeling

Fixed-Point Modeling

Implementation on DSP, GPP, or an FPGA?

Agenda

- What is the System Design Challenge
- Solutions for Embedded Software Development
 - Automatic Code Generation
 - Verification
- Solutions for Hardware Development
 - Automatic Code Generation
 - Verification

Implementation on DSP and GPP

MATLAB[®] SIMULINK[®]

Code Execution on Target and Profiling

118

Build and execute

The MathWorks

- Auto-generate 'C' and ASM
- Integrate RTOS and scheduler
- Create full CCS project
- Invoke compiler, linker, and download code
- Run on target
- Profile code performance

System profiling includes entire DSP application code

MathWorks	1 202
Aerospace and Defense Conference	' 07

	Web Browser - Profile Report		
Fil	e Edit View Go Debug Desktop Window H	telp	XSK
	🛚 🛸 💭 🎒 👫 Location: file:///D:/AEG/I	Demos/VIPBlks/EdgeOverlayFlow_on_DSP/targetModel2_c6C	
	Number of iterations counted	118	
			,
heduler	System name	targetModel3/Edge Detection Algorithm/Edge Detection1	
	STS object	stsSys0_OutputUpdate	
	Max time spent in this subsystem per interrupt	16.03 ms	
	Max percent of base interval	302%	
and	Number of iterations counted	118	
anu			
	System name	targetModel3	
	STS object	stsSys2_OutputUpdate	
	Max time spent in this subsystem per interrupt	244.4 ns	
	Max percent of base interval	0.000122%	
	Number of iterations counted	102	
J /-			
			11.
		-	
16.03 ms			
	244.4 ns		
8.02%			line
0.02.0	0.000122%	I Subsystem profi	ling
118			

102

Design Verification and Visualization:

Simulink as verification test bench

Simulink system design embedded on DSP

Review: Code Generation for Embedded Software

- Code Generation
 - Real Time Workshop ANSI/ISO C code for rapid prototyping, acceleration
 - Real Time Workshop Embedded Coder Embedded deployment
- Links
 - Link for Altium TASKING
 - Link for Analog Devices VisualDSP++ New!
 - Link for TI Code Composer Studio
- Targets
 - Target for TI C6000 DSP
 - Target for TI C2000 DSP
 - Target for Infineon C166 Microcontrollers
 - Target for Freescale MPC5xx Microcontrollers

Agenda

- What is the System Design Challenge
- Solutions for Embedded Software Development
 - Automatic Code Generation
 - Verification

Solutions for Hardware Development

- Automatic Code Generation
- Verification

Code Generation for Hardware

Simulink HDL Coder Correct-by-construction VHDL and Verilog code

Generated Verilog code

Aerospace and Defense Conference '07

Fixed-Point Implementation on an FPGA

Design Space Exploration

Speed How fast can this design run?

The MathWorks

Area

Can I use a smaller chip?

Power

Can I target a mobile device?

 Implementation Alternatives
 Sum & Product: Linear, Cascade, and Tre Gain: Multiplier, CSD, Factored-CSD Minimum/Maximum: Tree and Cascade
 Lookup Table: Inline or hierarchical

ect:	Clock settings		
Solver Data Import/Export Optimization Diagnostics 	Reset type: Asynchrono Clock input port: clk Reset input port: reset Additional settings General Ports Advan General Comment in header: Verilog file extension:	v VHDL file extension: .vhd	_
Model Herefencing Real-Time Workshop Comments Symbols Debug Debug HDL Coder Global Settings	Entry conflict postfix:	_entity Package postfix: _pkg _rsvdSplit entity and architecture _process Split entity file postfix: _entity Split arch file postfix: _arch	
d-CSD Cascad	de	OK Cancel Help	Apply

Code Generation Options

Aerospace and Defense Conference '07

More Code Generation Options

Select:	- Clock settings
Solver	Reset type: Asynchronous 💌 Reset asserted level: Active-high
Data Import/Export	Clock input port: clk Clock enable port: clk_enable
Diagnostics	Reset input port reset
Sample Time	Select reset and
Data Validity	-Additional settings
- Type Conversion	General Ports Advanced CIOCK OPTIONS
Connectivity	General
Hardware Implementation	Comment in header:
Model Referencing	Verilog file extension: .v VHDL file extension: .vhd
🗄 Real-Time Workshop	Entry conflict postfix: _entity Package postfix: _pkg
Comments	Reserved word postfix: rsvd 🗖 Split entity and architecture
	Clocked process postfix: process Split entity file postfix: entity
Debua	Colit crob file postfire
Interface	Split alici nie postik – ali n
HDL Coder	Set language-specific
- Global Settings	
" Lest Bench	options: input/output
	datatypes timescale
	datatypes, timeseate
	directives,

Generate HDL Test Bench

The MathWorks

Select	- Test bench-
Solver Optimization Optization Optization Optimization Optimizatio	Test bench name postfix: _tb Force clock Clock high time {ns}: 5 Clock low time {ns}: 5 Force clock enable Force reset Hold time {ns}: 2 Generate Test Bench Self-checking HDL test bench compares Simulink results to HDL results

Aerospace and Defense Conference '07

Automatic HDL Code Generation

- 'Correct-by-construction'
 - Matches Fixed-Point System Model
 - Faster design implementation
 - Reduces verification burden
- Benefits Include:

The MathWorks

2

Reference code for HDL engineers

Verification with system specification

✓▲ The MathWorks

MATLAB® & SIMULINK®

Making full use of the system model

- Promotes parallelism in design and verification tasks
- Improves focus on critical areas

Making full use of the system model

- Promotes parallelism in design and verification tasks
- Improves focus on critical areas
- Accelerates verification at all levels

Making full use of the system model

- Promotes parallelism in design and verification tasks
- Improves focus on critical areas
- Accelerates verification at all levels
- Supports re-use and "what-if" scenarios

Implementation on an FPGA

Device utilization summary:						A bears					
Selected Device : 4vsx25ff668-12											
Number of Slices:	1105	out	of	10240	10%						
Number of Slice Flip Flops:	1903	out	of	20480	9%	*					
Number of 4 input LUTs:	156	out	of	20480	0%	*					
Number of IOs:	14								0****		
Number of bonded IOBs:	14	out	of	320	4%	*		•			
Number of GCLKs:	1	out	of	32	3%						
 Minimum period: 4.106ns (M Minimum input required time be Maximum output delay after clo 	aximum fre fore clock ck: 7.32	quenc : 3 3ns	y: : .88:	243.5461 3ns	IHz)					m roca w w w w w w w w w w w w w	JNIHE?
							500 500				
							्ष हु:ब., हु: <u>ब.,</u> हु: ब.,	5. 5. 5.	£		
MathWorks									Q		

Aerospace and Defense Conference '07

Review: Code Generation for Hardware

- Code Generation
 - Simulink[®] HDL Coder FPGA and ASIC deployment using VHDL Ne^{w!} and Verilog
 - Filter Design HDL Coder Filter implementation from MATLAB
- Links
 - Link for Mentor ModelSim
 - Link for Cadence[®] Incisive[®] N<sup>e^W</sub>
 </sup>

Summary

- Design and verify <u>software and hardware</u> from MATLAB and Simulink
- Accelerate product development using Model-Based Design

