

Video and Image Processing Embedded System Design

Houman Zarrinkoub, PhD.

Marketing Manager

The MathWorks

MathWorks Aerospace and Defense Customers Video and Image Processing Application Examples

Autonomous Vehicles

Night Vision

Targeting

FLIR

Heads-Up Display

Satellite

MATLAB® SIMULINK®

Demo: Video Stabilization

- 5.
- Validate and verify design after deployment 6.

Traditional Workflow

Focus on algorithmic integrity, proof of concept Iterate on algorithmic trade-offs Validate against requirements 3. Convert design to fixed-point C/C++Focus on viability within implementation constraints 4. Simulate (fixed-point) Iterate on implementation trade-offs Validate against original requirements Generate code for implementation

Assembly

or HDL

MATI AR

Multiple Truths in Traditional Workflows

Re-implement as you go down the level of abstraction

Model-Based Design with Simulink

Aerospace and Defense Conference '07

Video and Image Processing Blockset

- Model, simulate, implement, and verify real-time video and imaging systems
 - Includes over 60 components and 100's of algorithms
 - Ideal for implementation of embedded systems

Streaming Video in/out Detection, Thresholding Tracking, Counting Background Estimation

MATLAB® & SIMULINK®

Demo: Video Stabilization

Fixed-Point Modeling*

- Avoid inaccurate results due to finite word effects
- Access tools built directly into block interfaces
- Easily change parameters to model the impact of rounding, overflow, and scaling

* Requires Simulink[®] Fixed Point for integer and fixed-point data types

MATLAB® & SIMULINK®

C Code Generation and Co-Simulation

- C code generation from Simulink
 - Real-Time Workshop®

The MathWorks

- Real-Time Workshop® Embedded Coder
- Co-simulation of C code in Simulink
 - Link for Code Composer Studio™
 - Link for TASKING®
- Embedded targets from Simulink
 - Target for TI C6000[™]

MATLAB® & SIMULINK®

Synplicity

HDL Generation and Co-Simulation

- Synthesizable VHDL and Verilog from Simulink
- **NEW** Simulink HDL Coder (MathWorks)
 - Filter Design HDL Coder (MathWorks)
 - System Generator for DSPTM (Xilinx)
 - DSP Builder (Altera)
 - Synplify DSP (Synplicity)
 - Co-simulation of VHDL and Verilog in Simulink
 - Link for ModelSim® (MathWorks)
- **NEW** Incisive® (MathWorks)
 - ModelSim Xilinx Edition (Xilinx)
 - ModelSim Altera Edition (Altera)

MathWorks

Aerospace and Defense Conference '07

Advantages of Model-Based Design

- Maintain "One Truth"
- Work in an integrated environment
 - Visualization and analysis
 - Modeling and simulation for embedded design
 - Implementation and testing
- Perform rapid prototyping
- Reduce errors and improve time-to-market

MATLAB[®] & SIMULINK[®]

Doheny Eye Institute Enables The Blind To See With MathWorks Tools

The Challenge

 To develop a retinal prosthetics proof-ofconcept prototype that interfaces with a permanent micro-electronic retinal implant

The Solution

 Used Simulink, Blocksets, Real-Time Workshop, and Target for TI C6000 to build and validate a rapid prototype on a DM642

The Results

- Completed phase II of research project ahead of schedule
- Currently in trials with patients though Doheny Eye Institute at the University of Southern California

MathWorks

Aerospace and Defense Conference '07

Example of the Prototype

"We are working on real-time image processing with the TI DM642 processor as the target. The Video and Image Processing Blockset makes the task of creating our design and working prototypes much simpler."

Dr. James Weiland Director, Intraocular Retinal Prosthesis Lab

MATLAB® SIMULINK®

Thank You

