

MATLAB® SIMULINK®

Using Physical Modeling Tools to Design Power Optimized Aircraft

Steve Miller

Technical Marketing, Physical Modeling Tools

The MathWorks GmbH, Munich, Germany

Steve.Miller@mathworks.de

Key Points

- Testing different actuator designs in one environment saves time and encourages innovation
- 2. Optimizing systems with respect to design requirements leads to optimal design choices
- 3. Simulating at different levels of fidelity is required to see effects of design implementation

Agenda

Trends in the aerospace industry

10 min

- Industry trends
- Strategies for improvement
- How simulation can help
- Example: Flight Actuation System

15 min

- Model explanation
- Tradeoff study
- System optimization
- Assess implementation effects
- Conclusions

Industry Trends

- System needs
 - Aircraft must produce less pollution
 - Aircraft must be more efficient
- Example goals
 - Clean Sky (for year 2020)
 - 50% reduction of CO₂ emissions
 - 80% reduction of nitrous oxide emissions
 - Power Optimized Aircraft (POA)
 - 25% cut in peak non-propulsive power
 - 5% reduction in fuel consumption
- Strategies include aircraft-level optimization, technology

"With 5-6°C warming ... existing models ... estimate an average 5-10% loss in global GDP."

Head of the Government Economic Service UK, 2006

Research project, EU and industry

Strategies for Improved Aircraft Design

- Technology: Electrical actuation
 - Fewer losses than hydraulic actuation
 - Only needs to be turned on when in use
 - Tend to be more reliable, cleaner, and safer
- Aircraft-level optimization
 - Consolidation of power electronics
 - Localize hydraulic actuation

Boeing 787 Electrical Systems

Brakes
Ice protection
Engine start
Environmental controls
Electrohydraulic pumps

Airbus 380 Electrical Systems

Primary flight control actuators
Thrust reverser actuation
Horizontal stabilizer backup

Simulation can help with each of these strategies

How Simulation Can Help

- 1. Tradeoff studies to test electrical and hydraulic systems
 - Determine actuator requirements
 - Test hydraulic and electrical actuator designs

2. System-level models

- Must be done at aircraft level to optimize architecture
- Few key parameters and quick simulation
- 3. Simulating at different levels of fidelity
 - Need to easily add fidelity to see impacts of implementation
 - Reuse work done at system level (Model-Based Design)

Example: Aileron Actuation System

Simulation goals

- 1. Determine requirements for actuation system
- 2. Test performance with electrical or hydraulic actuation
- 3. Optimize the actuation system
- 4. Assess effects of system implementation

Determining Actuation Requirements

Model:

Problem: Determine the requirements for an aircraft aileron actuator

<u>Solution</u>: Use <u>SimMechanics™</u> to model the aileron and <u>Simscape™</u> to model an ideal actuator

Test Electrical and Hydraulic Designs

Problem: Test different actuator designs in the system

Solution: Use SimHydraulics® and Simscape to model the actuators, and configurable subsystems to exchange them

Actuator System-Level Designs

Hydrostatic transmission

- Variable-displacement pump
- Double-acting hydraulic cylinder
- Replenishing valves
- Pressure-relief valves
- Charge pump
- Speed controller

Electromechanical system

- DC Motor
- Worm gear
- Current sensor and current controller
- Hall effect sensor and speed controller

Optimize System Performance

<u>Problem</u>: Optimize the speed controller to meet system requirements

Solution: Use Simulink® Response
Optimization™ to tune the
controller parameters

Assess Implementation Effects

<u>Problem</u>: Assess the effects of design implementation on system performance

Solution: Use **Simscape** to add a the analog circuit implementation

Conclusion

- Testing different actuator designs in one environment saves time and encourages innovation
- 2. Optimizing systems with respect to design requirements leads to optimal design choices
- 3. Simulating at different levels of fidelity is required to see effects of design implementation

MathWorks Products Used

- Simscape
 - Multidomain physical systems

- SimMechanics
 - 3-D mechanical systems

Hydraulic (fluid power) systems

Simulink Response Optimization