MATLAB EXPO 2017 Motor Controls Implementation on

Systems-On-Chip

Vasco Lenzi

Key Takeaways

Manage design complexity and improve team collaboration

Punch Powertrain develops complex SoC-based motor control

- Powertrains for hybrid and electric vehicles
- Hardware choice through simulations
- Traditional microcontroller too slow
- No experience designing FPGAs!

- Designed integrated E-drive: Motor, power electronics and software
- ✓ 4 different control strategies implemented
- ✓ Done in 1.5 years with 2FTE's
- ✓ Models reusable for production
- Smooth integration and validation due to development process

Key trend: Increasing demands from motor drives

Systems-on-Chip for motor control

Key Trend: SoCs are now used in 36% of new FPGA projects

Source: Wilson Research Group and Mentor Graphics, 2016 Functional Verification Study

Challenges in using SoCs for Motor and Power Control

Why use Model-Based Design to develop motor control applications on SoCs?

Conceptual workflow targeting SoCs

Hardware/software partitioning

MATLAB EXPO 2017

13

Code Generation

MATLAB EXPO 2017

3T Develops Robot Emergency Braking System with Model-Based Design

Challenge

Design and implement a robot emergency braking system with minimal hardware testing

Solution

Model-Based Design with Simulink and HDL Coder to model, verify, and implement the controller

Results

- Cleanroom time reduced from weeks to days
- Late requirement changes rapidly implemented
- Complex bug resolved in one day

"With Simulink and HDL Coder we eliminated programming errors and automated delay balancing, pipelining, and other tedious and error-prone tasks. As a result, we were able to easily and quickly implement change requests from our customer and reduce time-to-market."

A SCARA robot.

Ronald van der Meer

MathWorks[®]

³T

Key Takeaways

Manage design complexity and improve team collaboration

Learn More

- Get an in-depth demo in the Technology Showcase
 - discuss the award-winning Native Floating Point in HDL Coder!
- Videos
 - HDL Coder: Native Floating Point
- Webinars
 - Prototyping SoC-based Motor Controllers on Intel SoCs with MATLAB and Simulink
 - How to Build Custom Motor Controllers for Zynq SoCs with MATLAB and Simulink
- Articles
 - How Modeling Helps Embedded Engineers Develop Applications for SoCs (MATLAB Digest)
 - MATLAB and Simulink Aid HW-SW Codesign of Zynq SoCs (Xcell Software Journal)
- Tutorials:
 - Define and Register Custom Board and Reference Design for SoC Workflow

Field-Oriented Control of a Permanent Magnet Synchronous Machine on SoCs
MATLAB EXPO 2017

