
1© 2015 The MathWorks, Inc.

Accelerating FPGA/ASIC Design and

Verification

Tabrez Khan – Senior Application Engineer

Vidya Viswanathan – Application Engineer

2

Agenda

 Challeges with Traditional Implementation workflow

 Model-Based Design for Implementation

 Generate VHDL® and Verilog® code from MATLAB, Simulink, and

Stateflow®

 Optimize the generated RTL design for area and/or speed

 Develop system-level test benches in MATLAB and Simulink for RTL

verification with EDA tools

 Automate verification with FPGA-in-the-Loop

 Summary & next steps

3

DESIGN

Algorithm

Development

MATLAB

Simulink

Stateflow

Traditional Implementation Workflow

 Long development cycles

 Prevents short iteration cycles

 Difficult to optimize the
algorithm at a system level

Fixed Point Conversion

HDL Code Creation
FPGA Verification

HDL Refinement

HDL Verification

HDL Verification

4

Software

Designer

Separate Views of DSP Implementation

Algorithm

Designer

Hardware

Designer

5

FPGA DesignerSystem Designer

Algorithm Design

Fixed-Point

Timing / Control Logic

Architecture Exploration

Algorithms / IP

System Test Bench

Environment Models

Algorithms / IP

Analog Models

Digital Models

RTL Design

IP Interfaces

Hardware Architecture

Verification

Functional Simulation

Static Timing Analysis

Timing Simulation

Behavioral Simulation

Back Annotation
Implement Design

Map

Place & Route

Synthesis

FPGA Hardware

FPGA Requirements

Hardware Specification

Test Stimulus

Separate Views of DSP Implementation

6

Model-Based Design for Implementation

RTL Design

IP Interfaces

Hardware Architecture

Verification

Functional Simulation

Static Timing Analysis

Timing Simulation

Behavioral Simulation

Back Annotation
Implement Design

Map

Place & Route

Synthesis

FPGA Hardware

Algorithm Design

Fixed-Point

Timing / Control Logic

Architecture Exploration

Algorithms / IP

System Test Bench

Environment Models

Algorithms / IP

Analog Models

Digital Models

FPGA Requirements

Hardware Specification

Test Stimulus

MATLAB® and Simulink®

Algorithm and System Design

7

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

Model-Based Design for Implementation

RTL Design

IP Interfaces

Hardware Architecture

Verification

Functional Simulation

Static Timing Analysis

Timing Simulation

Behavioral Simulation

Back Annotation
Implement Design

Map

Place & Route

Synthesis

FPGA Hardware

Automatic HDL

Code Generation

8

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

Model-Based Design for Implementation

Verification

Functional Simulation

Static Timing Analysis

Timing Simulation

Behavioral Simulation

Back Annotation
Implement Design

Map

Place & Route

Synthesis

FPGA Hardware

HDL Co-Simulation
Automatic HDL

Code Generation

Behavioral Simulation

9

Model-Based Design for Implementation

Verification

Static Timing Analysis

Timing Simulation

Back Annotation
Implement Design

Map

Place & Route

Synthesis

FPGA HardwareImplement Design

Map

Place & Route

Synthesis

Functional Simulation

Verification

Static Timing Analysis

Timing Simulation

Functional Simulation

Back Annotation

HDL Co-Simulation
Automatic HDL

Code Generation

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

Behavioral Simulation

10

FPGA Hardware

Model-Based Design for Implementation

Implement Design

Map

Place & Route

Synthesis

Verification

Static Timing Analysis

Timing Simulation

Functional Simulation

Back Annotation

HDL Co-Simulation
Automatic HDL

Code Generation

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

FPGA Hardware

FPGA-in-the-Loop

Behavioral Simulation

11

Implement Design

Map

Place & Route

Synthesis

Verification

Static Timing Analysis

Timing Simulation

Functional Simulation

Back Annotation

HDL Co-Simulation
Automatic HDL

Code Generation

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

FPGA Hardware

FPGA-in-the-Loop

Behavioral Simulation

Model-Based Design for Implementation
Integrated Workflow

12

 Reduced FPGA prototype development schedule

 Shorter design iteration cycle by 80%

 Improved product quality

Why Model-Based Design: Achieving the Shift-Left
Reduce overall development time

Increase

detailed

modelling

Decrease

downstream

development time

13

Automatic HDL Code Generation
HDL Coder

Automatically generate bit-true,

cycle-accurate HDL code from

Simulink, MATLAB and Stateflow

Full bi-directional

traceability!!

14

HDL Code Generation Example

15

Generate Verilog or VHDL code

16

Code Generation Report

 Traceability Report

 Resource Utilization

Report

 Critical Path

Estimation Report

17

What’s new?

Native Floating-Point

Generate target-independent

synthesizable RTL from single-precision

floating-point models

 Good for:

– Designs with high dynamic range calculations

– Getting started prototyping FPGAs without

having to perform fixed-point conversion

 Mix integer, fixed-point, and floating point

operations to balance numerical accuracy

versus hardware resource usage

 Over 130 Simulink blocks supported

 Demo video

» edit hdlcoderFocCurrentFloatScript

https://www.mathworks.com/videos/hdl-coder-native-floating-point-123505.html

18

HDL Optimizations: What, How and Why?

Does it fit on

my FPGA?Does this

meet timing?

FPGA Engineer

The three golden questions:

1. Speed: Does it meet timing?

2. Area: Does it fit on my FPGA?

3. Validation: Does it do the right thing?

HDL optimizations assists the engineer in meeting these constraints

Does it do the

right thing?

19

Critical Timing Path

 Critical path highlighting

 Helps you identify speed bottlenecks

20

Speed Optimization

R
e
g
is

te
r

Smaller

critical path

R
e
g
is

te
r

R
e
g
is

te
r

 Automatic pipelining

 Helps you meet speed objectives

Maximum rate = 145 MHz

Is this the best

rate that is

achievable??

21

Speed Optimization
Output Pipelining

22

Speed Optimization
Output Pipelining

Where do I place

the pipeline

registers??

23

Speed Optimization
Distributed Pipelining

24

Speed Optimization
Distributed Pipelining

Maximum rate = 235 MHz

25

Area Optimization

‘N’ (say 20) multipliers, each

running at 1 clock cycle

1 multiplier running at ‘N’ (20)

clock cycles

26

Area Optimization

Resource Sharing

27

Area Optimization

Resource Sharing

28

Area Optimization

Resource Sharing

29

What’s new?

Adaptive Pipelining

Specify synthesis tool and target clock

frequency for automatic pipeline

insertion and balancing

 Automatically inserts pipeline registers to

meet target frequency

– On by default

– Adds pipeline registers on parallel paths to

balance number of stages

 Good for:

– Getting started prototyping FPGAs without

worrying about manually inserting Delay blocks

TargetFrequency=500

30

Integrated HDL Verification

Implement Design

Map

Place & Route

Synthesis

Verification

Static Timing Analysis

Timing Simulation

Functional Simulation

Back Annotation

HDL Co-Simulation
Automatic HDL

Code Generation

Behavioral Simulation

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

FPGA Hardware

FPGA-in-the-Loop

31

Co-Simulation with HDL Simulator

Test Bench

HDL Simulator

AlgorithmTest Bench Stimuli Results

Simulink
HDL Verifier

+

-

 Proof your HDL matches
the MATLAB/Simulink
specification

 Re-using MATLAB/Simulink
testbench

32

FPGA Hardware

Model-Based Design for Implementation

Implement Design

Map

Place & Route

Synthesis

Verification

Static Timing Analysis

Timing Simulation

Functional Simulation

Back Annotation

HDL Co-Simulation
Automatic HDL

Code Generation

Behavioral Simulation

MATLAB® and Simulink®

Algorithm and System Design

Model Refinement for Hardware

FPGA Hardware

FPGA in the Loop

33

FPGA-in-the-Loop (FIL)

for any HDL code

Supported Xilinx boards

KC 705

ML605

ML505

ML506

ML507

XUP Atlys

XUP-V5

SP605

SP601

ML401

ML402

ML403

 Part of HDL Verifier

 Easy to setup using FIL Wizard

 Fast simulation

– HDL runs on FPGA

– Gigabit Ethernet data transfer

Supported Altera boards

Arria II Cyclone III

DE2-115 Cyclone IV

34

Automation FPGA-in-the-Loop Verification

Automatic creation of

FPGA-in-the-Loop

verification models

Integration with FPGA

development boards

Add your own FPGA

board (needs Ethernet)

35

New FPGA Families and Boards Supported by FIL

 FPGA Family

– Virtex Ultrascale

 FPGA board

– Artix-7 Arty (JTAG)

– Virtex-7 VC709 (JTAG, PCIe)

– Virtex Ultrascale VCU110 (JTAG)

36

SystemVerilog DPI Test Bench

 Previously only available via command-line interface

 Now it’s available in Config Param as well as HDL Workflow Advisor

37

HDL Verifier: HDL Code Coverage

Activate HDL simulator code coverage

in generated test benches

» makehdltb('sfir_fixed/symmetric_fir',...

» 'GenerateSVDPITestBench','ModelSim', ...

» 'HDLCodeCoverage', 'on',)

 Works for cosimulation, SystemVerilog DPI,

or vector-based testbenches

 Supports Mentor Graphics Questa Sim and

Cadence Incisive

38

HDL Verifier: FPGA Data Capture

 Debug signals in a free-running FPGA

directly in MATLAB or Simulink

 Generates a block to add into the

VHDL/Verilog design going onto the FPGA

 Collects and visualizes the data in MATLAB

or Simulink

 Demo video

Probe internal FPGA signals to analyze

in MATLAB or Simulink

» generateFPGADataCaptureIP

Available as part of HDL Verifier Xilinx/Intel hardware

support packages

https://www.mathworks.com/videos/hdl-verifier-fpga-data-capture-1487889896343.html

39

Harris Accelerates Verification of Signal

Processing FPGAs

Challenge
Streamline a time-consuming manual process for

testing signal processing FPGA implementation

Solution
Use HDL Verifier to verify the HDL design from within MATLAB

Results
 Functional verification time cut by more than 85%

 100% of planned test cases completed

 Design implemented defect-free

“HDL Verifier enabled us to greatly

reduce functional verification

development time by providing a direct

cosimulation interface between our

MATLAB model and our logic simulator.

As a result, we verified our design

earlier, identified problems faster,

completed more tests, and compressed

our entire development cycle.”

Jason Plew

Harris Corporation

Link to user story

Harris FPGA-based system.

http://www.mathworks.com/company/user_stories/Harris-Accelerates-Verification-of-Signal-Processing-FPGAs.html

40

Lockheed Martin Develops Configurable,

Space-Qualified Digital Channelizer Using

MathWorks Tools

Challenge
Design and implement a reconfigurable, space-qualified

digital channelizer

Solution
Use Simulink to model and simulate the system, and

HDL Verifier with Mentor Graphics ModelSim to verify the

VHDL implementation

Results
 Verification time reduced by 90%

 Overall development time shortened by eight

months

 Key algorithms reused, saving 50% of design effort

on subsequent projects

“With Simulink and HDL Verifier,

simulation and verification are

performed in one environment. As

a result, we can test the design

from end to end, improving quality

and ensuring design accuracy and

validity."

Bradford Watson

Lockheed Martin Space Systems

Artist’s rendition of one of the satellites

that will carry Lockheed Martin’s digital

channelizer.

Link to user story

http://www.mathworks.com/company/user_stories/Lockheed-Martin-Develops-Configurable-Space-Qualified-Digital-Channelizer-Using-MathWorks-Tools.html

41

Summary

 Respect project timeline

– Discover issues early through simulation

– Fast code turnarounds allow better design trade-offs

 Collaborate in multidisciplinary teams

– Use one Model for Design and Implementation

– Seamlessly integrate version management

– Graphically compare models

 Create working code

– Analyze fixed-point impact before going to implementation

– Auto-generate bug free code

– Verify early through co-simulation with FPGA’s

 Achieve required efficiency

– Optimize through advisors and automatic optimizations

???

42

Call To Action

Learn more with recorded webinars & videos

 Accelerate Design Space Exploration Using HDL Coder

Optimizations

 HDL Implementation and Verification of a High-Performance FFT

 Using Custom Boards for FPGA-in-the-Loop Verification

 A Guided Workflow for Zynq Using MATLAB and Simulink

 HDL Verifier: FPGA Data Capture

https://www.mathworks.com/videos/accelerate-design-space-exploration-using-hdl-coder-optimizations-81998.html
https://www.mathworks.com/videos/hdl-implementation-and-verification-of-a-high-performance-fft-102537.html
https://in.mathworks.com/videos/using-custom-boards-for-fpga-in-the-loop-verification-71971.html
http://www.mathworks.com/videos/a-guided-workflow-for-zynq-using-matlab-and-simulink-86427.html?s_tid=srchtitle
http://in.mathworks.com/videos/hdl-verifier-fpga-data-capture-1487889896343.html

43

Generating HDL Code from Simulink
two-day course shows how to generate and verify HDL code from a Simulink® model using HDL

Coder™ and HDL Verifier™

Topics include:

 Preparing Simulink models for HDL code generation

 Generating HDL code and testbench for a compatible Simulink model

 Performing speed and area optimizations

 Integrating handwritten code and existing IP

 Verifying generated HDL code using testbench and cosimulation

44

Programming Xilinx Zynq SoCs with MATLAB and Simulink
two-day course focuses on developing and configuring models in Simulink® and deploying on

Xilinx® Zynq®-7000 All Programmable SoCs. For Simulink users who intend to generate, validate, and

deploy embedded code and HDL code for software/hardware codesign using Embedded Coder® and

HDL Coder™.

A ZedBoard™ is provided to each attendee for use throughout the course. The board is programmed

during the class and is yours to keep after the training.

Topics include:

 Zynq platform overview and environment setup, introduction to Embedded Coder and HDL

Coder

 IP core generation and deployment, Using AXI4 interface

 Processor-in-the-loop verification, data interface with real-time application

 Integrating device drivers, custom reference design

45

DSP for FPGAs
This three-day course will review DSP fundamentals from the perspective of implementation within the FPGA fabric.

Particular emphasis will be given to highlighting the cost, with respect to both resources and performance, associated

with the implementation of various DSP techniques and algorithms.

Topics include:

 Introduction to FPGA hardware and technology for DSP applications

 DSP fixed-point arithmetic

 Signal flow graph techniques

 HDL code generation for FPGAs

 Fast Fourier Transform (FFT) Implementation

 Design and implementation of FIR, IIR and CIC filters

 CORDIC algorithm

 Design and implementation of adaptive algorithms such as LMS and QR algorithm

 Techniques for synchronisation and digital communications timing recovery

46

Speaker Details
Email: tabrez.khan@mathworks.in

Vidya.viswanthan@mathworks.in

Contact MathWorks India

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.

mailto:tabrez.khan@mathworks.in
mailto:Vidya.viswanthan@mathworks.in
mailto:info@mathworks.in

