Accelerating FPGA/ASIC Design and Verification

MATLAB EXPO 2017

Tabrez Khan – Senior Application Engineer Vidya Viswanathan – Application Engineer

Agenda

- Challeges with Traditional Implementation workflow
- Model-Based Design for Implementation
- Generate VHDL[®] and Verilog[®] code from MATLAB, Simulink, and Stateflow[®]
- Optimize the generated RTL design for area and/or speed
- Develop system-level test benches in MATLAB and Simulink for RTL verification with EDA tools
- Automate verification with FPGA-in-the-Loop
- Summary & next steps

Traditional Implementation Workflow

Separate Views of DSP Implementation

Separate Views of DSP Implementation

System Designer

FPGA Designer

MATLAB[®] and Simulink[®] Algorithm and System Design Model Refinement for Hardware

Automatic HDL Code Generation

FPGA Hardware

Integrated Workflow

All steps from 1 single GUI

Why Model-Based Design: Achieving the Shift-Left Reduce overall development time

- Reduced FPGA prototype development schedule
- Shorter design iteration cycle by 80%
- Improved product quality

Automatic HDL Code Generation

HDL Coder

A MathWorks[®]

HDL Code Generation Example

Generate Verilog or VHDL code

Code Generation Report

- Traceability Report
- **Resource Utilization** Report
- Critical Path **Estimation Report**

🚹 Code Generation Report					– 🗆 🗙
💠 🔶 🛱 Find:	Match Case				>
Contents Summary Clock Summary Code Interface Report Timing And Area Report High-level Resource Report Critical Path Estimation Optimization Report Distributed Pipelining Streaming and Sharing Delay Balancing Adaptive Pipelining	Critical Path Report Summary Section Critical Path Delay : 6.910 Critical Path Delay : 6.910 Critical Path Begin : <u>ud8</u> Critical Path End : <u>y_out_p</u> Highlight Critical Path: hdl	ort for sfir_fixed/symmetric_f	ir .m		
Traceability Report	Id	Propagation (ns)	Delay (ns)	Block Path	
	1	0.2980	0.2980	<u>ud8</u>	
	2	1.4960	1.1980	<u>a1</u>	
	3	5.5000	4.0040	<u>m1</u>	
Generated Source Files	4	5.5000	0.0000	<u>a5</u>	
symmetric fir.vhd	5	6.9100	1.4100	<u>y_out_pre</u>	
	symmetric_fir View sfir_fixed > Pa symmetric sfir_fixed > Pa symmetric s	All hetric_fir into 1 2 sfixt6_En10 1 2 sfixt6_En10 1 2 ud8 ud7 ud6 1 2 sfixt6_En10 1 2 sfixt6_En10 1 2 ud7 ud7 ud7 ud6 1 2 sfixt6_En10 1 2 ud7 ud7 ud7 ud7 ud7 ud7 ud7 ud7 ud7	delayed_xou delayed_xou sfx16_En10 z ud5 ud5 ud5 ud5 ud5 ud5 ud5 ud5	t Search current and below IF t t t t t t t t t t t t t	3 lain
		- m2	n_m3 a6	[OK Help

What's new? Native Floating-Point

Generate target-independent synthesizable RTL from single-precision floating-point models

Good for:

- Designs with high dynamic range calculations
- Getting started prototyping FPGAs without having to perform fixed-point conversion
- Mix integer, fixed-point, and floating point operations to balance numerical accuracy versus hardware resource usage
- Over 130 Simulink blocks supported
- Demo video

PROTM

HDL Optimizations: What, How and Why?

The	e three golde	en questions:
1.	Speed:	Does it meet timing?
2.	Area:	Does it fit on my FPGA?
3.	Validation:	Does it do the right thing?

HDL optimizations assists the engineer in meeting these constraints

Critical Timing Path

✓ Critical path highlighting
 ✓ Helps you identify speed bottlenecks

Speed Optimization

Summary Section

Critical Path Delay : 6.910 ns

Critical Path Begin : ud8

Critical Path End : <u>y_out_pre</u> Highlight Critical Path: <u>hdl_prj\hdlsrc\symmetric_fir_fixed\criticalPathEstimated.m</u>

Critical Path Details

Id	Propagation (ns)	Delay (ns)	Block Path
1	0.2980	0.2980	<u>ud8</u>
2	1.4960	1.1980	<u>a1</u>
3	5.5000	4.0040	<u>m1</u>
4	5.5000	0.0000	<u>a5</u>
5	6.9100	1.4100	<u>y_out_pre</u>

Maximum rate = 145 MHz

Is this the best rate that is achievable??

✓ Automatic pipelining✓ Helps you meet speed objectives

Speed Optimization

Output Pipelining

Subsystem & Model Reference	•	
Test Harness	•	
Format	•	
Rotate & Flip	•	
Arrange	•	
Mask	•	
Library Link	(*)	
Signals & Ports	•	
Requirements Traceability		
Linear Analysis	•	
Design Verifier	•	
Coverage	•	shows how to use
Model Advisor	•	check, Lyarify HDL for a
Fixed-Point Tool		mmetric FIR filter.
Model Transformer	•	ype the following:
C/C++ Code		ir_fixed/symmetric_fir)
HDL Code	•	Check Subsystem Compatibility
PLC Code	•	Generate HDL for Subsystem
Polyspace	•	HDL Coder Properties
Block Parameters (Subsystem)		HDL Block Properties
Properties		HDL Workflow Advisor
Help		Noviente la Cada

Launch HDL Dialog

Run Demo Copyright 2007 The MathWorks, Inc.

HDL Pro	perties: symm	etric_	fir		×
General	Target Spe	ecifica	ation		
Implemen	tation				
Architectu	re	Mod	ule		•
Implemen	tation Param	neters	S		
AdaptivePi	pelining		inherit		-
BalanceDe	lays		inherit		-
ClockRate	Pipelining		inherit		-
Constraine	dOutputPipe	eline	0		
Distributed	Pipelining		off		-
DSPStyle			none		-
FlattenHie	rarchy		inherit		-
InputPipel	ine		0		
OutputPipe	eline		5		
SharingFac	ctor		0		
Streaming	Factor		0		
	OK	(Cancel	Help	Apply

Speed Optimization Output Pipelining

Summary Section

Critical Path Delay : 6.940 ns

Critical Path Begin . uuo

Critical Path End : <u>out 0_pipe</u> Highlight Critical Path: <u>hdl_pri\hdlsrc\sfir_fixed\criticalPathEstimated.m</u>

Critical Path Details

Where do I place the pipeline registers??

Block Path

<u>y_out_pre</u>

out_0_pipe

<u>ud8</u>

<u>a1</u>

<u>m1</u>

<u>a5</u>

Delay (ns)

0.2980

1.1980

4.0040

0.0000

1.4100

0.0300

Speed Optimization

Distributed Pipelining

Subsystem & Model Reference	,	
Test Harness	•	
Format	•	
Rotate & Flip	•	
Arrange	•	
Mask	•	
Library Link	() () ()	
Signals & Ports	•	
Requirements Traceability	•	
Linear Analysis	•	
Design Verifier	•	
Coverage		e shows how to use
Model Advisor	•	o check,
Fixed-Point Tool		ymmetric FIR filter.
Model Transformer	•	type the following:
C/C++ Code	•	fir_fixed/symmetric_fir')
HDL Code	•	Check Subsystem Compatibility
PLC Code	•	Generate HDL for Subsystem
Polyspace	•	HDL Coder Properties
Block Parameters (Subsystem)		HDL Block Properties
Properties		HDL Workflow Advisor
Help		Navigate to Code

Launch HDL Dialog

Run Demo Copyright 2007 The MathWorks, Inc.

눰 HDL Prope	erties: symmetr	ric_fir	×
General Implementa	Target Specil tion	fication	
Architecture	М	Iodule	•
Implementa	tion Paramet	ters	
AdaptivePipe	elining	inherit	•
BalanceDela	ys	inherit	•
ClockRatePip	pelining	inherit	•
Constrained	OutputPipelir	ne 0	
DistributedP	ipelining	on	•
DSPStyle		on off	
FlattenHiera	rchy	inherit	Ŧ
InputPipelin	е	0	
OutputPipeli	ne	5	
SharingFacto	or	0	
StreamingFa	ictor	0	
	OK	Cancel Help Apply	y

Speed Optimization

Distributed Pipelining

Summary Section

Critical Path Details

Id	Propagation (ns)	Delay (ns)	Block Path
1	0.2980	0.2980	<u>rd_16</u>
2	4.3020	4.0040	<u>m2</u>
3	4.3320	0.0300	<u>rd_13</u>

Area Optimization

Х

Area Optimization Resource Sharing

Subsystem & Model Reference	•	
Test Harness	•	
Format	•	
Rotate & Flip	•	
Arrange	•	
Mask	,	
Library Link	- 19 C	
Signals & Ports	•	
Requirements Traceability	•	
Linear Analysis	•	
Design Verifier	•	
Coverage		e shows how to use
Model Advisor	•	o check,
Fixed-Point Tool		ymmetric FIR filter.
Model Transformer	•	type the following:
C/C++ Code	•	fir_fixed/symmetric_fir')
HDL Code	•	Check Subsystem Compatibility
PLC Code	•	Generate HDL for Subsystem
Polyspace	•	HDL Coder Properties
Block Parameters (Subsystem)		HDL Block Properties
Properties		HDL Workflow Advisor
Help		Navigate to Code

Launch HDL Dialog

Run Demo Copyright 2007 The MathWorks, Inc.

Target Specification General Implementation Module Architecture Ŧ Implementation Parameters inherit AdaptivePipelining . BalanceDelays inherit ClockRatePipelining inherit ConstrainedOutputPipeline 0 DistributedPipelining on DSPStyle none FlattenHierarchy inherit InputPipeline 0 OutputPipeline 4 4 SharingFactor StreamingFactor 0

Cancel

Help

OK

HDL Properties: symmetric_fir

Apply

Area Optimization Resource Sharing

Generic Resource Report for symmetric_fir_fixed

Summary

Multipliers	4
Adders/Subtractors	7
Registers	27
Total 1-Bit Registers	559
RAMs	0
Multiplexers	0
I/O Bits	135
Static Shift operators	0
Dynamic Shift operators	0

Generic Resource Report for symmetric_fir_fixed

Summary

Multipliers	1
Adders/Subtractors	9
Registers	38
Total 1-Bit Registers	814
RAMs	0
Multiplexers	6
I/O Bits	135
Static Shift operators	0
Dynamic Shift operators	0

Area Optimization Resource Sharing

What's new? Adaptive Pipelining

Specify synthesis tool and target clock frequency for automatic pipeline insertion and balancing

- Automatically inserts pipeline registers to meet target frequency
 - On by default
 - Adds pipeline registers on parallel paths to balance number of stages
- Good for:
 - Getting started prototyping FPGAs without worrying about manually inserting Delay blocks

Integrated HDL Verification

Co-Simulation with HDL Simulator

FPGA Hardware

FPGA-in-the-Loop (FIL) for any HDL code

- Part of HDL Verifier
- Easy to setup using FIL Wizard
- Fast simulation
 - HDL runs on FPGA
 - Gigabit Ethernet data transfer

Steps	Actions		
Hardware Options -> Source Files DUT I/O Ports Build Options	Specify the source files for the HDL design. The FIL Wizard will the file type in the File Type column if it is incorrect. Enter a check next to the file name that contains the top-level r incorrect in the Top-level module name field.	attempt nodule. (Ch
	Source Files:		_
	File File	Туре	1
	hdlsrc\D_component.vhd VHDL	•	Ē
	hdlsrc\I_component.vhd VHDL	_	Γ
	hdlsrc\Controller.vhd VHDL	-	V
	Top-level module name: Controller		
	Top-level module name: Controller		
	Top-level module name: Controller Status		
	Top-level module name: Controller Status		

Supported Xilinx boards

KC 705	SP605
ML605	SP601
ML505	ML401
ML506	ML402
ML507	ML403
XUP Atlys	
XUP-V5	

Supported Altera boards

Arria II Cyclone III DE2-115 Cyclone IV

Automation FPGA-in-the-Loop Verification

HDL Workflow Advisor - my_equalizer_sim_optimization File Edit Run View Help Find: name and description 	n/EqualizerAlgoritl	Integration with F development boa	PGA ards		
 HDL Workflow Advisor I. Set Target ^1.1. Set Target Device and Synthesis Tool I. Set Target Model For HDL Code Generation 2.1. Check Global Settings ^2.2. Check All geb Automatic cree ^2.3. Check Block Con FPGA-in-the ^2.4. Check Sample Times ^2.5. Check FF GA-in-Verification r 3. HDL Code Generation 3.1. Set Code Generation Options ^3.2. Generate RTL Code and Testbench 3.3. Verify with the Cosimulation 4. FPGA-in-the-Loop Implementation 4.1. Set FPGA-in-the-Loop Options 4.2. Build FPGA-in-the-Loop 	1.1. Set Target Analysis (^Trij Set Target De Input Param ation of -Loop nodels Package Project fold Set Target Result:	et Device and Synthesis Tool ggers Update Diagram) evice and Synthesis Tool for HDL code g neters flow FPGA-in-the-Loop orm Xilinx Virtex-6 ML605 development fool Xilinx Virtex-6 ML605 development ool Altera Arria II GX FPGA development Altera Cyclone IV GX FPGA development Altera DE2-115 development XUP Atlys Spartan-6 SP601 development Xilinx Virtex-4 ML401 development Xilinx Virtex-5 ML505 development Xilinx Virtex-5 ML505 development Xilinx Virtex-4 ML401 development Xilinx Virtex-5 ML505 development Xilinx Virtex-5 ML507 development Xilinx Virtex-5 ML505 development Xilinx Virtex-5 ML505 development Xilinx Virtex-5 ML605 development Xilinx Virtex-5 ML605 development Xilinx Virtex-5 ML605 development Xilinx Virtex-5 ML605 development Xilinx Virtex-5 M	A eneration board nent kit ment kit opment kit deducation bo on Kit, Cyclor it board ent board on Kit, Cyclor it board ent board on Kit, Cyclor it board on Kit, Cyclor it board on board	oard he III Edition	wn FPGA Ethernet) Launch Board Manager
	Passed Set T	arget Device and Synthesis Tool.			

New FPGA Families and Boards Supported by FIL

- FPGA Family
 - Virtex Ultrascale
- FPGA board
 - Artix-7 Arty (JTAG)

- Virtex-7 VC709 (JTAG, PCIe)

- Virtex Ultrascale VCU110 (JTAG)

SystemVerilog DPI Test Bench

MathWorks[®]

- Previously only available via command-line interface
- Now it's available in Config Param as well as HDL Workflow Advisor

Test Bench Generation Output	
HDL test bench	
Cosimulation model	
SystemVerilog DPI test bench	
Simulation tool: Cadence Incisive	▼ HDL code coverage

Activate HDL simulator code coverage in generated test benches

- Works for cosimulation, SystemVerilog DPI, or vector-based testbenches
- Supports Mentor Graphics Questa Sim and Cadence Incisive

>> makehdltb('sfir_fixed/symmetric_fir',...

>> 'GenerateSVDPITestBench', 'ModelSim', ...

```
>> 'HDLCodeCoverage', 'on', )
```

Test Bench Generation Output
HDL test bench
Cosimulation model
SystemVerilog DPI test bench
Simulation tool: Mentor Graphics Modelsim 🔻 🗹 HDL code coverage

Questa Coverage Report

Number of texts

run:	1								
Passed:	0								
Warning:	1								
Error:	0								
Fatal:	0								
List of tests included	in report								
List of global attribut	es included in r	eport							
List of Design Units i	included in repo	o <u>rt</u>							
Coverage Summ	ary by Struc	cture:	Coverage Sumn	1ary by	у Туре	:			
Design Scope ∢	Coverage 🖪		Total Coverage:				95.19%	92.33%	
Controller_dpi_tb	92.33%		Coverage Type 🖣	Bins 🖪	Hits 🖪	Misses 4	Weight 🖣	% Hit 4	Coverage 🖪
	00.000/		Statements	39	39	0	1	100.00%	100.00%
u_Controller	92.33%		Statements						
u_Controller	92.33%		Branches	11	9	2	1	81.81%	81.81%

MathWorks

R7()17~

HDL Verifier: FPGA Data Capture

MathWorks[®]

Probe internal FPGA signals to analyze in MATLAB or Simulink

- Debug signals in a free-running FPGA directly in MATLAB or Simulink
- Generates a block to add into the VHDL/Verilog design going onto the FPGA
- Collects and visualizes the data in MATLAB or Simulink
- Demo video

Available as part of HDL Verifier Xilinx/Intel hardware support packages

Harris Accelerates Verification of Signal Processing FPGAs

Challenge

Streamline a time-consuming manual process for testing signal processing FPGA implementation

Solution

Use HDL Verifier to verify the HDL design from within MATLAB

Results

- Functional verification time cut by more than 85%
- 100% of planned test cases completed
- Design implemented defect-free

Harris FPGA-based system.

"HDL Verifier enabled us to greatly reduce functional verification development time by providing a direct cosimulation interface between our MATLAB model and our logic simulator. As a result, we verified our design earlier, identified problems faster, completed more tests, and compressed our entire development cycle."

> Jason Plew Harris Corporation

Lockheed Martin Develops Configurable, Space-Qualified Digital Channelizer Using MathWorks Tools

Challenge

Design and implement a reconfigurable, space-qualified digital channelizer

Solution

Use Simulink to model and simulate the system, and HDL Verifier with Mentor Graphics ModelSim to verify the VHDL implementation

Results

- Verification time reduced by 90%
- Overall development time shortened by eight months
- Key algorithms reused, saving 50% of design effort on subsequent projects

Artist's rendition of one of the satellites that will carry Lockheed Martin's digital channelizer.

"With Simulink and HDL Verifier, simulation and verification are performed in one environment. As a result, we can test the design from end to end, improving quality and ensuring design accuracy and validity."

> Bradford Watson Lockheed Martin Space Systems

Summary

Respect project timeline

- Discover issues early through simulation
- Fast code turnarounds allow better design trade-offs

Collaborate in multidisciplinary teams

- Use one Model for Design and Implementation
- Seamlessly integrate version management
- Graphically compare models

Create working code

- Analyze fixed-point impact before going to implementation
- Auto-generate bug free code
- Verify early through co-simulation with FPGA's
- Achieve required efficiency
 - Optimize through advisors and automatic optimizations

Call To Action

Learn more with recorded webinars & videos

- Accelerate Design Space Exploration Using HDL Coder Optimizations
- HDL Implementation and Verification of a High-Performance FFT
- Using Custom Boards for FPGA-in-the-Loop Verification
- A Guided Workflow for Zynq Using MATLAB and Simulink
- HDL Verifier: FPGA Data Capture

MathWorks[®] | *Training Services*

Generating HDL Code from Simulink

two-day course shows how to generate and verify HDL code from a Simulink[®] model using HDL Coder[™] and HDL Verifier[™]

Topics include:

- Preparing Simulink models for HDL code generation
- Generating HDL code and testbench for a compatible Simulink model
- Performing speed and area optimizations
- Integrating handwritten code and existing IP
- Verifying generated HDL code using testbench and cosimulation

MathWorks[®] | *Training Services*

Programming Xilinx Zynq SoCs with MATLAB and Simulink

two-day course focuses on developing and configuring models in Simulink[®] and deploying on Xilinx[®] Zynq[®]-7000 All Programmable SoCs. For Simulink users who intend to generate, validate, and deploy embedded code and HDL code for software/hardware codesign using Embedded Coder[®] and HDL Coder[™].

A ZedBoard[™] is provided to each attendee for use throughout the course. The board is programmed during the class and is yours to keep after the training.

Topics include:

- Zynq platform overview and environment setup, introduction to Embedded Coder and HDL Coder
- IP core generation and deployment, Using AXI4 interface
- Processor-in-the-loop verification, data interface with real-time application
- Integrating device drivers, custom reference design

MathWorks[®] | *Training Services*

DSP for FPGAs

This three-day course will review DSP fundamentals from the perspective of implementation within the FPGA fabric. Particular emphasis will be given to highlighting the cost, with respect to both resources and performance, associated with the implementation of various DSP techniques and algorithms.

Topics include:

- Introduction to FPGA hardware and technology for DSP applications
- DSP fixed-point arithmetic
- Signal flow graph techniques
- HDL code generation for FPGAs
- Fast Fourier Transform (FFT) Implementation
- Design and implementation of FIR, IIR and CIC filters
- CORDIC algorithm
- Design and implementation of adaptive algorithms such as LMS and QR algorithm
- Techniques for synchronisation and digital communications timing recovery

Accelerating the pace of engineering and science

Speaker Details Email: <u>tabrez.khan@mathworks.in</u> <u>Vidya.viswanthan@mathworks.in</u>

Contact MathWorks India

Products/Training Enquiry Booth Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.