

Classification of Material by Measuring Fluid-Flow Obstruction

Submitted by, Shobith Thomas Jacob Jazil Nazir Shemeena P. Abdulrazaq

Problem Statement

- Characterization of obstructing materials in a free-flow fluid path in human body using passive data acquisition method in 100% risk- free manner at low cost
 - Exact procedures for removal of material can be determined only if the nature of the material is known
- Active methods are costly and the risk of external matter in the cavity needs to be mitigated
- Experiments were non-repeatable in real-time scenario

- SFO created a lab set-up which could emulate the actual scenario
- A device was created utilizing SFO's in-house mechanical expertise in 3D printing
- The device had a compartment to keep obstructing material of various hardness
- A passive sensor was used in conjunction with a high resolution, high accuracy ADC to capture the signal from the material
- SFO developed a custom software to record and display the data in real-time

SFO TECHI

www.nestgroup.net

Creating Innovative Solutions

- SFO found that the background noise significantly corrupts the signal
- Savitksy-Golay (SG) Filter with appropriate filter coefficients cleans up the signals
- To find out the first impact point, a twopronged strategy was adopted
 - □Finding out the approximate point of impact using SG filter with a specific set of parameters
 - Pin-pointing the exact location by working around a small area near the approximate point

SFO TECHN

- The SFO algorithm worked in a completely autonomous manner
 - □Iterates itself over the whole length of the signal period
 - □ Ignores the effect of noise significantly
 - Adapts the filter coefficients (all by itself) to extract the exact point of impact

SFO TECHNOLOGIES

- Parameters varied significantly between experiments even when the same impact material was used
- SFO used statistical analysis of the parameters to classify the nature of materials

SFO TECHNOLOGIES

Tools Used

MATLAB R2016a
 DSP System Toolbox
 Signal Processing Toolbox
 Wavelet Toolbox
 Minitab 17.2.1

Results Achieved SFO TECHNOLOGIES ➤Clean-up of signal and identification major characteristics

NeST Controlled/Confidential

Creating Innovative Solutions

www.nestgroup.net

Results Achieved (Contd...)

Creating Innovative Solutions

Results Achieved (Contd...)

NeST Controlled/Confidential

Creating Innovative Solutions

SFO TECHNOLOGIES

Results Achieved (Contd...) SEO TECHNOLOGIES Statistical Analysis using CDF for Average Slope

Results Achieved (Contd...) SET TECHNOLOGIES Statistical Analysis using CDF for Area under the curve Comparison of CDF of Area under the curve

Area under the curve (V-s) ➤ The area under the CDF curves can be used to distinguish between hard & soft items

Summary

SFO successfully demonstrated that a passive sensor can be used to characterize the nature of obstructing material

- Eliminates the need for active sensing methods which are very costly
- ➤The procedure is 100% risk-free and reduce the scope for human error

Consistent results were obtained even when experiments were non-repeatable

Summary (Contd...)

- MATLAB signal processing was essential for successful extraction of signal parameters
- SG filtering using MATLAB cleans up the signal significantly
- SFO developed a custom autonomous algorithm to extract data from signal using MATLAB
- SFO could extract about 10 different parameters from highly time-varying, nonrepeatable signals using MATLAB

Summary (Contd...)

- Statistical analysis of data must be used to differentiate between hard and soft materials
- Statistical parameters provide consistent results even though the experiments are non-repeatable

THANK YOU

Creating Innovative Solutions