MATLAB EXPO 2018

Master Class: Diseño de Sistemas Mecatrónicos

Luis López

Key Points

- Create intuitive models that all teams can share
- Simulate system in one environment to
 - Perform tradeoff studies
 - Optimise system performance
- Test without prototypes

Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Example: Aileron Actuation System

System

- Simulation goals
 - 1. Determine requirements for actuation system
 - 2. Test actuator designs
 - 3. Optimise system performance
 - 4. Run simulation on real-time hardware for HIL tests

Traditional Design Process

Model-Based Design

Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Problem: Model the mechanical system within Simulink

Solution: Import the mechanical model from CAD into Simscape Multibody

MATLAB EXPO 2018

MathWorks[®]

Link Specification and Design

Situation:

Aileron System Req. 1. Mechanical System Layout b Part Numbers

Problem: Difficult to check design against specification.

Solution: Link design and specification using Simulink Requirements

Determining Actuator Requirements

Problem: Determine the requirements for an aircraft aileron actuator

Solution: Use Simscape Multibody to model the aileron and use inverse dynamics to determine the required force MATLAB EXPO 2018

Testing Electrical and Hydraulic Designs

Problem: Select type of actuator based on system-level requirements

Solution: Use Simscape Fluids and Simscape Electronics to model the actuators, and variant subsystems to test them MATLAB EXPO 2018

Balancing the Tradeoff of Model Fidelity and Simulation Speed

Problem: Add implementation details to the model and test system performance

Solution: Use Simscape Electronics to add analog circuit implementation and PWM MATLAB EXPO 2018

Model Custom Physical Components in Simscape

Model:

Problem: Add custom equation to model thermal effect on resistor

Solution: Use MATLAB and Simscape to model the component.

$$v = r_0 * (1 + \alpha * (T - T_0)) * i$$

17	parameters					
18	$R = \{ 1, 'kOhm' \};$	% Nomi				
19	$a = \{ 0.001, '1/K' \};$	% Temp				
20	$TO = \{ 300, 'K' \};$	% Refe				
21	$T = \{ 300, 'K' \};$	% Curr				
22	end					

30	equations		
31	v == R*(1+a*(T-T0))*i;		
32	end		

Extend and Create Libraries

MATLAB EXPO 2018

Library: MyComponents - Simulink – × Eile Edit View Display Diagram Analysis Help WyComponents WyComponents MyComponents Ready 561%

Define the physical network ports for the Simscape block

- Reuse existing physical domains to extend libraries
- Define new physical domains

15

Define User Interface

	EDITOR	VIEW	▼ ⊙ 🤤 🖻 🧟 🖬 🔬 🔚 🗸				
	MyResistor.sso	× +					
1	1 component MyResistor						
2	% R Therm						
3	<pre>% Resis</pre>	tor with (temperature dependence defined by V = R(1+alpha*(T-T0))				
4	% where	R is the	nominal resistance at the reference temperature in ohms				
5	% and a	lpha is th	he temperature coefficient.				
6	0		0010 The Methianies Tree				
/	* Copyr	ignt 2005-	-2016 The Mathworks, Inc.				
0	nodes						
10	noues	foundatio	on electrical electrical: % +·left				
11	n =	foundatio	on.electrical.electrical; % -:right				
12	end		-				
13	varia	bles					
14	i =	{ 0, 'A'	};				
15	v =	{ 0, 'V'	};				
16	5 end						
17	parameters						
18	R = { 1, 'kOhm' }; % Nominal Resistance						
19	a mo	$= \{ 0.001 \}$, '1/K' }; % Temperature coefficient				
20	TU	= { 300,	K }; & Reference Temperature				
21	end	- 1 300,	K }, % current remperature				
23	funct	ion cotur					
24	if :	R < 0					
25		nm error	(!eimegane:GreaterThanOrFgualToZero! !Resistange!)				
	namet	ore					
ра		ers .					
R = { 1, 'kOhm' }; % Nominal Resistance							
$a = \{ 0.001, \frac{1}{K'} \}; $ Temperature coefficient							
	т0 =	{ 300,	, 'K' }; % Reference Temperature				
	т =	1 300	'K' } & Current Temperature				
	• -	, 500,	, it j, o current remperature				
en	ıd						
			Sincerne model file				

Block Parameters: R Therm Х R Therm Resistor with temperature dependence defined by V = R(1+alpha*(T-T0)) where R is the nominal resistance at the reference temperature in ohms and alpha is the temperature coefficient. Source code Choose source Settings Parameters Variables Nominal Resistance: 10 kOhm > Temperature coefficient: 0.001 1/K

Reference Temperature:

Current Temperature:

Parameters, units, default values, and dialog box text are all defined in the Simscape file (extension .ssc).

300

300

Κ

Κ

Leverage MATLAB

	EDITOR	VIEW	▼ ⊙ ⊙ ⊒ ≥ € ∄ ≝ ↓ 🗒 🗛 🔨	
	MyResistor.s	sc × +		
	1 compone	ent MyResi	stor	
	2 % R The	erm		
	3 % Resi	stor with	temperature dependence defined by V = R(1+alpha*(T-T0))	
	4 % where	e R is the	nominal resistance at the reference temperature in ohms	
	5 % and a	alpha is t	he temperature coefficient.	
	6			
	7 % Copy	right 2005	-2016 The MathWorks, Inc.	
	8			
	9 node	5		
1	0 p =	= foundati	on.electrical.electrical; % +:left	
1	1 n =	= foundati	on.electrical.electrical; % -:right	tor typics
1	2 end			
1	3 varia	ables		
1	4 i =	= { 0, 'A'	};	Analyzir
1	5 v =	= { 0, 'V'	};	- Anaryzn
1	6 end			
1	7 para	neters		Perform
1	8 R	$= \{ 1, 'k \}$	Ohm' }; % Nominal Resistance	
1	9 a	= { 0.001	<pre>, '1/K' }; % Temperature coefficient</pre>	
2	0 TO	= { 300,	<pre>'K' }; % Reference Temperature</pre>	
2	1 T	= { 300,	'K' }; % Current Temperature	
2	2 end			
2	3 func	tion setup		
2	4 if	R < 0		
2	5	pm_error	<pre>('simscape:GreaterThanOrEqualToZero', 'Resistance')</pre>	
2	6 end	d		
2	7 end			
2	8 bran	chee		
2	9 :	i: p.i ->	n.i;	
ſ	functi			
	Lunger		Lup	
	if H	R < 0		
		pm er	cor('simscape:GreaterThanOrEqualToZe	ro'.'Resistance'
	and		· · · · · · · · · · · · · · · · · · ·	,,
	ena			
	end			
N			2019	
`				

Use MATLAB functions and expressions for typical physical modeling tasks:

- Analyzing parameters
- Performing preliminary computations

Create Reusable Components

	EDITOR	VIEW		₹ 💿 😴		
	MyResistor.sso	× +				
1	component MyResistor					
2	% R The	% R Therm				
3	<pre>% Resis</pre>	tor with t	emperature dependence defined by V = R(1+alpha*(7	Г-ТО))		
4	% where	R is the	nominal resistance at the reference temperature i	in ohms		
5	% and a	lpha is tl	e temperature coefficient.			
6						
7	& Copyr	ight 2005	2016 The MathWorks, Inc.			
8						
9	nodes	- · · ·				
10	p =	foundatio	n.electrical.electrical; % +:left			
	n =	roundatio	n.electrical.electrical; % -:right			
12	ena	blog				
11	valia		1.			
15	v =	$\{0, \mathbf{Y}\}$	};			
16	end	(0/ .	,,			
17	param	eters				
18	R	= { 1, 'k	hm' }; % Nominal Resistance			
19	a	= { 0.001	'1/K' }; % Temperature coefficient			
20	т0	= { 300,	<pre>K' }; % Reference Temperature</pre>			
21	Т	= { 300,	K' }; % Current Temperature			
22	equ	ations				
23						
24		v ==	p.v - n.v;			
25		v ==	R*(1+a*(T-T0))*i; ^{'oZero','Resistance')}			
26			((, ,,			
27	ena					
20	i	· n i -> 1	· · ·	T 7		
30	end	. p.1 / 1		V		
31	Guuai					
32	v	== p.v -	n.v;			
33	v	== R* (1+a	*(T-TO))*i;			
34	end					
35	end					
			Simscape model file Ln 8	Col 1		

Equations defined in a text-based language

- Based on variables, their time derivatives, parameters, etc.
- Define simultaneous equations
 - Can be DAEs, ODEs, etc.
 - Assignment not required
 - Specifying inputs and outputs not required

$$v = r_0 * (1 + \alpha * (T - T_0)) * i$$

Estimating Parameters Using Measured Data

Model:

Problem: Simulation results do not match measured data because model parameters are incorrect

Solution: Use Simulink Design Optimization to automatically tune model parameters MATLAB EXPO 2018

R	L	J	K	В
4.03	1e-4	0.11	0.45	1.07

Estimating Parameters Using Measured Data

- Steps to Estimating Parameters
 - 1. Import measurement data and select estimation data
 - 2. Identify parameters and their ranges
 - 3. Perform parameter estimation

Parameter Sweep Using Parallel Computing

Model:

Problem: Measure degradation in system performance as supply pressure dropsSolution: Use Parallel Computing Toolbox to speed up the parameter sweep

Parameter Sweep Using Parallel Computing

- Steps to compare simulation methods
 - 1. Open pool of MATLAB sessions

>> parpool 2

2. Generate parameter sets

Kp_array = [0.25:0.5:19.75]; Generate_Sim_Settings

3. Run simulations **serially**

```
simOut =
sim(simInput,'ShowProgress','on','UseFastRestart',
'on');
```

4. Run simulations in parallel

simOut =
parsim(simInput,'ShowProgress','on','UseFastRestart
','on','TransferBaseWorkspaceVariables','on');

Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Optimizing System Performance

Model:

Problem: Optimize the speed controller to meet system requirements

Solution: Tune controller parameters with Simulink Design Optimization

Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
 - Tradeoff studies
- Optimizing System-Level Design
- HIL testing

Configuring an Electrical Actuator for HIL Testing

Model:

Problem: Configure solvers to minimize computations and convert to C code for real-time simulation

Solution: Use Simscape local solvers on stiff physical networks and Simulink Coder™ to generate C code MATLAB EXPO 2018

Key Points

- Create intuitive models that all teams can share
- Simulate system in one environment to
 - Perform tradeoff studies
 - Optimise system performance
- Test without prototypes

