

1

 Simulating Quadrotor Dynamics using Imported CAD Data

Ryan F. Gordon1, Preethi Kumar2 and Richard Ruff3
Mathworks Inc, Natick,MA,01760

Quadrotors have grown in popularity with the increased availability of low-cost
hardware. Low-cost platforms enable students, hobbyists and research engineers to design
and fly custom software on a limited budget. As part of this design process, modeling and
simulation can be used to improve the flight characteristics of the vehicle and enable more
complex control designs. Common design patterns in aerospace system design can be
applied to the quadrotor design to improve the development process. This paper describes
the start of the design and development process — the transition from CAD data to a full
dynamic model.

Nomenclature
PWM = pulse width modulation
CAD = computer aided design
T = propeller thrust
I = propeller index
L = distance from center of quadrotor to center of propeller
zb = body frame z-position
w = wind velocity
C = rotation direction of propeller
S = rotation rate axis of propeller
kt = coefficient of thrust
ρ = air density
Ap

 = propeller area
αi = propeller rotational rate
P = propeller pitch
Rp = propeller radius

I. Introduction
tudies of quadrotor mechanics typically focus on a first-principles approach in which the vehicle’s equations of
motion are defined to determine how the forces and moments of the quadrotor are applied to a dynamic model.

With advanced modeling and simulation technology it is possible to instead define the dynamics of the system via
the topography of the design and apply the propeller forces directly. This approach simplifies the modeling process
because the designer no longer needs to derive the equations of motion of the system. To further simplify this
process, the designer can automatically generate the topography of the mechanical system by importing CAD data
into the simulation software. Since CAD models are often developed in tandem with the simulation, importing the
CAD design can significantly speed up the process of building and updating the plant model used in simulation
studies. This process can also reduce the number of errors introduced when design changes occur since they are
implemented systematically instead of by hand.
 In this paper we extend a quadrotor case study1 previously presented by using CAD data, obtained from the
quadrotor supplier, to construct a higher fidelity plant model. This CAD data is converted into XML data that can
be read by a physical modeling tool. Once in this domain the system dynamics can be analyzed and aerodynamics
added. Furthermore, the model enables the control design process to begin before the vehicle design is completed.
Once the vehicle is available, flight code can be generated and tested almost immediately.

1 Product Marketing Manager, Simulink Platform Marketing, MathWorks, 3 Apple Hill Dr. Natick, MA 01760.
2 Controls Tools Developer, Language of Technical Computing, MathWorks, 3 Apple Hill Dr. Natick, MA 01760.
3 Principal Application Engineer, Application Engineering, MathWorks, 3 Apple Hill Dr. Natick, MA 01760.

S

2

II. Importing Data from 3D CAD Software
On large projects the development of one team is often dependent on the results of another. In this case study

the modeling, simulation, and control of the quadrotor sits in the middle of two major development efforts. First, a
supplier designed the vehicle and defined the geometry for the control design team. After the team designs the
simulation and control system, the final effort will involve generating flight code and deploying to the vehicle. In
this example, the geometry is primarily defined in a SolidWorks assembly. This data can be imported into
SimMechanics®4, a physical modeling tool, to simulate the dynamics of the system with Simulink®5 and begin the
control design process.

With Model-Based Design6, engineering teams can complete the design and test of the control system prior to

acquiring the final hardware from the manufacturer. In this case, the team is able to design the control software in
parallel with the physical
hardware manufacture. Using
these methods the team can
significantly accelerate their
development of the flight control
system as they do not need to wait
for the supplier to finalize and
deliver the hardware. The process
of creating the model, performing
simulations to study the dynamics,
and designing the initial flight
controls for this system is
described in more detail
throughout the sections of this
paper.

 The steps involved in importing a CAD model into SimMechanics are:

1. Install and register SimMechanics Link®

SimMechanics Link® is a utility that needs to be installed and registered using a MATLAB® session. This
process makes SimMechanics Link® available in the CAD platform as an Add-In tool that enables exporting
CAD assemblies.

2. Export the CAD model to an XML file

Using the Add-in tool, the CAD model can be converted to an XML file that contains a description of the
model’s geometric properties in a format that SimMechanics® can analyze.

3. Import the XML file into SimMechanics®

This XML file can then be imported to SimMechanics® using a simple command (‘smimport’). The
resulting Simulink® model has the same geometric properties (including dimensions, position, orientation,
and inertia) as those defined in CAD.

III. Improving Simulation and Evaluating Dynamics

A. Connecting Physical Components with Joints

Through the import process, we specify the geometric properties of the quadrotor (figure 2), as provided by the
quadrotor supplier. The next step is to define the quadrotor motion, which is done it two steps:

Figure 1 Mechanics Explorer View of Quadrotor

3

1. Define how the propellers move with respect to the
motor (figure 3).

2. Define the amount of thrust produced by this movement.

 To define the motion of the propellers with respect to the
motors, we use four revolute joints, one between each

motor-propeller pair. On simulating the model with the
revolute joints, the Mechanics Explorer tool allows us to
verify the motion occurs on the desired axis.

To define the force produced due to this motion we

actuate the revolute joints with external forces. The
amount of thrust generated by the propellers is a function
of the rate of rotation of the propellers and the angular
rate of rotation of the body along the roll and the pitch
axes. On simulating this setup without power supplied to
the motors, the quadrotor can be seen falling due to the influence
of gravity.

The thrust can be defined by building up physical signals, which are part of the physical modeling environment,

based on the thrust equation below. Applying the resultant thrust to the revolute joint will allow each propeller to
generate the appropriate thrust based on it’s rotational rate.. The thrust can be defined as2:

௜ܶ = ௜ܥ ቆ
1− ܵܥܮߨ2	

௜ߙܲ
+ ߨ2

௕ݖ ௭್̇ݓ−
௜ߙܲ

ቇ

Where C is defined:

௜ܥ = ݇௧ܣߩ௣ߙ௜ଶܴ௣ଶ

With most of the constants defined by the geometry of the vehicle and its dynamics, we assume reasonable

values for the thrust constant, kt, until it can be determined from testing the motors and propellers of the actual
vehicle. Once this is accomplished we fine tune the controller gains, deploy the control system on the target
hardware, and flight test the vehicle to refine the model.

B. Simulating a Physical Ground
To more closely simulate a real world application, we add a ground stop block to the model at this point. This

ensures that the vehicle does not fall infinitely. Essentially, this simulates hard ground from which the quadrotor can
take off and land. Currently, the ground is assumed to be a flat surface. In the future, modifications can be made to
this block to simulate a sloped or uneven surface.

C. Adding Motor Dynamics

Next, we need to provide input to the

motors that will control the maneuvers
performed by the quadrotor. The plant
model consists of the quadrotor’s frame, the Figure 4 DC Motor Modeled with Physical Modeling Components

Figure 2 Initial Mechanical Design after Import

Figure 3 Modified Design After Import

4

four motors (figure 4), the four propellers, and the electronics required to navigate the vehicle. Four electronic speed
controllers (ESC) regulate the speed of the four motors according to the input PWM signal. The input to the speed
controller is a voltage, which is indicative of the duty-cycle of the PWM signal that drives the ESC. Thus, we add
blocks to the model that take a voltage input and produce a PWM signal that can be used to drive the motor. A
power amplifier with a controlled PWM voltage generator and an H-bridge serves as the ESC. At this point, the
simulation is still open loop. The H-bridge enables the two motors (placed opposite each other in the quadrotor’s
frame) to rotate in the clockwise direction, while the other two rotate in the counterclockwise direction. This step
allows the moments about the opposite pairs of motors to cancel out, preventing the quadrotor from spinning about
its center (yaw-axis) continuously. The same positive voltage is then fed to all four motors to test the simulation at
this stage. On providing a sufficiently high voltage, the quadrotor will produce enough thrust to overcome gravity
and lift off.

IV. Preliminary Control Design and Model Integration
The final step is to design a controller that stabilizes the plant and supports tracking. Given a target altitude, pitch

and roll, the controller will produce the required
motor voltage inputs. Three cascaded loops
form the control architecture. Each loop
consists of an outer rate controller and an inner
position controller. Each controller has a
proportional, integral, and a derivative term.
We use the PID blocks available in Simulink
and can be tuned with Simulink Control
Design3. Each PID block is associated with a
PID tuner, which can be used to specify a

desired response time and the desired transient behavior.
The PID tuner works by first linearizing the plant

model around the controller block. The algorithm then
determines an initial guess of appropriate gains based on
the results of the linearization. Finally, the PID tuner
interface provides a set of sliders that we use to achieve
the desired response. Typical PID objectives include:

 Closed-loop stability — The closed-loop system

output remains bounded for bounded input.

 Adequate performance — The closed-loop system
tracks reference changes and suppresses

disturbances as rapidly as possible. The larger the
loop bandwidth (the frequency of unity open-loop
gain), the faster the controller responds to changes in the reference or disturbances in the loop.

 Adequate robustness — The loop design
has enough gain margin and phase margin to allow for modeling
errors or variations in system dynamics.3

We use a step or a Bode plot to verify the tuned controller.

We update the controller gains in the model from the tuner’s
interface, tuning the roll and the pitch commands. The altitude is
then tuned to achieve a hover control.

We validate the tuned response by comparing the linear step

response, exported from the PID tuner tool (figure 6), to the
nonlinear model step response simulated in the Simulink model.
This analysis shows, through overlay and difference of the
responses (figure 7), that the nonlinear and linear responses

Figure 5 Preliminary Control Loops on Position and Rate in Three
Axes

Figure 6 PID Tuner Interface

Figure 7 Comparison of Linear and Nonlinear
models

5

compared well. These tests can be repeated as the nonlinear model is refinedusing data from the hardware to assure
the control design linear models match the SimMechanics based nonlinear physical models.

The final step for this particular system is deploying the controller to the hardware, which in this case is a

multiple step process:

1) Implement the controller in the full quadrotor model1

2) Determine additional control logic necessary for system calibration on startup

3) Generate and compile code for the controller model and deploy to the control unit on the vehicle

V. Next Steps
When the hardware is acquired we can more precisely determine the relationship between PWM inputs, electric

motor torque, and thrust generation using system identification methods. Once this is completed the control system
will be fine tuned and deployed to the vehicle. Flight testing the vehicle and comparing the results to the simulation
will show how well the control design works. At this point the control can be expanded to achieve a number of
tasks such as advanced tracking or maneuvers not currently possible with the basic control scheme.

VI. Conclusion
In this paper, we have shown that utilizing CAD data import capabilities to define the dynamics of a quadrotor

system simplifies the overall design process by bypassing the process of deriving the differential equations for the
system. After the modeling was completed, linear analysis tools were used to design a preliminary controller.
The linear model compared well with the nonlinear model. This proves the linearization tool, as part of the PID
tuner, was able to accurately linearize the different physical components within the model. As the fidelity of the
model improves with the acquisition of hardware these same tools will continue to be applied to design the control
system. Additional tools from this design environment can be employed for system identification, code
generation, and deployment to the hardware1.

Appendix
A. Sample of XML Code Created with SimMechanics Link software

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SimMechanicsImportXML version="1.0" xmlns="urn:mathworks:simmechanics:import" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<Created by="" on="03/26/13||14:19:39" using="SimMechanics Link Version 4.2" from="SolidWorks 20.3.0"/>
<ModelUnits mass="kilogram" length="inch"/>
<DataUnits mass="kilogram" length="meter"/>
<RootAssembly name="QUADROTOR" uid="QUADROTOR" version="110">
<AssemblyFile name="QUADROTOR.sldasm" type="SolidWorks Assembly"/>
<InstanceTree>
<Instance name="BOARD-1" uid="BOARD-1" entityUid="BOARD*:*Default">
<Transform>
<Rotation>-0.707107 0.707107 0 -0.707107 -0.707107 0 0 0 1</Rotation>
<Translation>0 0 0.0070358</Translation>
</Transform>
</Instance>
<Instance name="ASSY, ROTOR END-1" uid="ASSY, ROTOR END-1" entityUid="ASSY, ROTOR END" rigid="true">
<Transform>
<Rotation>1 0 0 0 1 0 0 0 1</Rotation>
<Translation>0.0021844 -1.4e-006 1.4e-006</Translation>
</Transform>
<Instance name="TUBE END-1" uid="TUBE END-1" entityUid="TUBE END*:*Default">
<Transform>

6

<Rotation>0 -1 0 1 0 0 0 0 1</Rotation>
<Translation>0.083058 0 0</Translation>
</Transform>
<VisualProperties>
<Ambient r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Diffuse r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Specular r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Emissive r="0" g="0" b="0" a="1"/>
<Shininess>0.31</Shininess>
</VisualProperties>
</Instance>
<Instance name="TUBE-1" uid="TUBE-1" entityUid="TUBE*:*Default">
<Transform>
<Rotation>1 0 0 0 1 0 0 0 1</Rotation>
<Translation>0 0 0</Translation>
</Transform>
<VisualProperties>
<Ambient r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Diffuse r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Specular r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Emissive r="0" g="0" b="0" a="1"/>
<Shininess>0.31</Shininess>
</VisualProperties>
</Instance>
<Instance name="MOTOR-1" uid="MOTOR-1" entityUid="MOTOR*:*Default">
<Transform>
<Rotation>1 0 0 0 1 0 0 0 1</Rotation>
<Translation>0.0975336 0 0.0113538</Translation>
</Transform>
</Instance>
<Instance name="CARRIER-1" uid="CARRIER-1" entityUid="CARRIER*:*Default">
<Transform>
<Rotation>1 0 0 0 1 0 0 0 1</Rotation>
<Translation>0.108597 0 -0.0076962</Translation>
</Transform>
<VisualProperties>
<Ambient r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Diffuse r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Specular r="0.25098" g="0.25098" b="0.25098" a="1"/>
<Emissive r="0" g="0" b="0" a="1"/>
<Shininess>0.31</Shininess>
</VisualProperties>
</Instance>
<Instance name="GEAR-1" uid="GEAR-1" entityUid="GEAR*:*Default">
<Transform>

…

</VisualProperties>
</Part>
</Parts>
</SimMechanicsImportXML>

7

B. System Level Block Diagram of the Model

Acknowledgments
The authors would like to acknowledge the contribution of the team at Aero Analysis LLC for providing the

CAD model and the hardware for our development efforts.

References
1Ruff, R., Stephens, C., Mahapatra, S., “Applying Model-Based Design to Large-Scale Systems Development: Modeling,

Simulation, Test, & Deployment of a Multirotor Vehicle,” Proceedings of AIAA 2012
2Goel, R., Shah, S., Gupta, N. and Ananthkrishnan, N., “Modeling, Simulation and Flight Testing of an Autonomous

Quadrotor,” Proceedings of ICEAE 2009
3MathWorks. Simulink® Control Design User's Guide. Natick : MathWorks, 2013.
4MathWorks. SimMechanics User's Guide. Natick : MathWorks, 2013.
5MathWorks. Simulink® User's Guide. Natick : MathWorks, 2013.
6Turevskiy, A, Gage, S and Buhr, C. Model-Based Design of a New Light-weight Aircraft. South Carolina : AIAA Modeling

and Simulation Technologies Conference and Exhibit, 2007.

©2013 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

